86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action.

          Mineral trioxide aggregate (MTA) has been recommended for various uses in endodontics. Two previous publications provided a comprehensive list of articles from November 1993-September 2009 regarding the chemical and physical properties, sealing ability, antibacterial activity, leakage, and biocompatibility of MTA. The purpose of Part III of this literature review is to present a comprehensive list of articles regarding animal studies, clinical applications, drawbacks, and mechanism of action of MTA. A review of the literature was performed by using electronic and hand-searching methods for the clinical applications of MTA in experimental animals and humans as well as its drawbacks and mechanism of action from November 1993-September 2009. MTA is a promising material for root-end filling, perforation repair, vital pulp therapy, and apical barrier formation for teeth with necrotic pulps and open apexes. Despite the presence of numerous case reports and case series regarding these applications, there are few designed research studies regarding clinical applications of this material. MTA has some known drawbacks such as a long setting time, high cost, and potential of discoloration. Hydroxyapatite crystals form over MTA when it comes in contact with tissue synthetic fluid. This can act as a nidus for the formation of calcified structures after the use of this material in endodontic treatments. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. More clinical studies are needed to confirm its efficacy compared with other materials. Copyright (c) 2010. Published by Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Properties and applications of calcium hydroxide in endodontics and dental traumatology.

            Calcium hydroxide has been included within several materials and antimicrobial formulations that are used in a number of treatment modalities in endodontics. These include, inter-appointment intracanal medicaments, pulp-capping agents and root canal sealers. Calcium hydroxide formulations are also used during treatment of root perforations, root fractures and root resorption and have a role in dental traumatology, for example, following tooth avulsion and luxation injuries. The purpose of this paper is to review the properties and clinical applications of calcium hydroxide in endodontics and dental traumatology including its antibacterial activity, antifungal activity, effect on bacterial biofilms, the synergism between calcium hydroxide and other agents, its effects on the properties of dentine, the diffusion of hydroxyl ions through dentine and its toxicity. Pure calcium hydroxide paste has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. Its main actions are achieved through the ionic dissociation of Ca(2+) and OH(-) ions and their effect on vital tissues, the induction of hard-tissue deposition and the antibacterial properties. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. It has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also an effective anti-endotoxin agent. However, its effect on microbial biofilms is controversial. © 2011 International Endodontic Journal.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bioceramics: Past, present and for the future

                Bookmark

                Author and article information

                Journal
                Restor Dent Endod
                Restor Dent Endod
                RDE
                Restorative Dentistry & Endodontics
                The Korean Academy of Conservative Dentistry
                2234-7658
                2234-7666
                February 2015
                03 November 2014
                : 40
                : 1
                : 1-13
                Affiliations
                [1 ]Department of Conservative Dentistry and Endodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India.
                [2 ]Department of Prosthodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India.
                Author notes
                Correspondence to Shivani Utneja, MDS. Senior Research Associate, Department of Conservative Dentistry and Endodontics, Maulana Azad Institute of Dental Sciences, Bahadur Shah Zafar Marg, New Delhi, India 110002. TEL, +91-9711459961; FAX, +91-1-23217081; shivaniutneja81@ 123456yahoo.co.in
                Article
                10.5395/rde.2015.40.1.1
                4320271
                25671207
                ab7aba6c-d542-4e3a-912c-1d468b51ba27
                ©Copyrights 2015. The Korean Academy of Conservative Dentistry.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2014
                : 31 August 2014
                Categories
                Review Article

                biological and physical properties,calcium enriched mixture cement,clinical applications,composition,leakage,mechanism of action

                Comments

                Comment on this article