12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chlorogenic acid alleviates obesity and modulates gut microbiota in high‐fat‐fed mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To evaluate the anti‐obesity effects of chlorogenic acid (CGA), the mice were fed a high‐fat diet (HFD) upon chlorogenic acid treatment for 6 weeks. The results showed administration of chlorogenic acid (150 mg per kg per day) remarkably promoted body loss, reduced lipid levels in plasma and altered mRNA expression of lipogenesis and lipolysis related genes in adipose tissue. Moreover, chlorogenic acid also reversed the HFD‐induced gut microbiota dysbiosis, including significantly inhibiting the growth of Desulfovibrionaceae, Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, and raising the growth of Bacteroidaceae, Lactobacillaceae. Overall, the amelioration of HFD‐induced gut microbiota dysbiosis by chlorogenic acid may contribute, at least partially, to its beneficial effects on ameliorating HFD‐induced obesity.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease.

          The histopathology of nonalcoholic fatty liver disease (NAFLD) is similar to that of alcoholic liver disease. Colonic bacteria are a source of many metabolic products, including ethanol and other volatile organic compounds (VOC) that may have toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. Recent data suggest that the composition of the gut microbiota in obese human beings is different from that of healthy-weight individuals. The aim of this study was to compare the colonic microbiome and VOC metabolome of obese NAFLD patients (n = 30) with healthy controls (n = 30). Multitag pyrosequencing was used to characterize the fecal microbiota. Fecal VOC profiles were measured by gas chromatography-mass spectrometry. There were statistically significant differences in liver biochemistry and metabolic parameters in NAFLD. Deep sequencing of the fecal microbiome revealed over-representation of Lactobacillus species and selected members of phylum Firmicutes (Lachnospiraceae; genera, Dorea, Robinsoniella, and Roseburia) in NAFLD patients, which was statistically significant. One member of phylum Firmicutes was under-represented significantly in the fecal microbiome of NAFLD patients (Ruminococcaceae; genus, Oscillibacter). Fecal VOC profiles of the 2 patient groups were different, with a significant increase in fecal ester compounds observed in NAFLD patients. A significant increase in fecal ester VOC is associated with compositional shifts in the microbiome of obese NAFLD patients. These novel bacterial metabolomic and metagenomic factors are implicated in the etiology and complications of obesity. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota.

            Resveratrol and quercetin, widely found in foods and vegetables, are plant polyphenols reported to have a wide range of biological activities. Despite their limited bioavailabilities, both resveratrol and quercetin are known to exhibit anti-inflammation and anti-obesity effects. We hypothesized that gut microbiota may be a potential target for resveratrol and quercetin to prevent the development of obesity. The aim of this research was to confirm whether a combination of quercetin and resveratrol (CQR) could restore the gut microbiota dysbiosis induced by a high-fat diet (HFD). In this study, Wistar rats were divided into three groups: a normal diet (ND) group, a HFD group and a CQR group. The CQR group was treated with a HFD and administered with a combination of quercetin [30 mg per kg body weight (BW) per day] and resveratrol [15 mg per kg body weight (BW) per day] by oral gavage. At the end of 10 weeks, CQR reduced the body weight gain and visceral (epididymal, perirenal) adipose tissue weight. Moreover, CQR also reduced serum lipids, attenuated serum inflammatory markers [interleukin (IL)-6, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1] and reversed serum biochemical parameters (adiponectin, insulin, leptin, etc.). Importantly, our results demonstrated that CQR could modulate the gut microbiota composition. 16S rRNA gene sequencing revealed that CQR had an impact on gut microbiota, decreasing Firmicutes (P < 0.05) and the proportion of Firmicutes to Bacteroidetes (P = 0.052). CQR also significantly inhibited the relative abundance of Desulfovibrionaceae (P < 0.01), Acidaminococcaceae (P < 0.05), Coriobacteriaceae (P < 0.05), Bilophila (P < 0.05), Lachnospiraceae (P < 0.05) and its genus Lachnoclostridium (P < 0.001), which were reported to be potentially related to diet-induced obesity. Moreover, compared with the HFD group, the relative abundance of Bacteroidales_S24-7_group (P < 0.01), Christensenellaceae (P < 0.001), Akkermansia (P < 0.01), Ruminococcaceae (P < 0.01) and its genera Ruminococcaceae_UCG-014 (P < 0.01), and Ruminococcaceae_UCG-005 (P < 0.01), which were reported to have an effect of relieving HFD-induced obesity, was markedly increased in the CQR group. Overall, these results indicated that administration of CQR may have beneficial effects on ameliorating HFD-induced obesity and reducing HFD-induced gut microbiota dysbiosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota: a potential new territory for drug targeting.

              The significant involvement of the gut microbiota in human health and disease suggests that manipulation of commensal microbial composition through combinations of antibiotics, probiotics and prebiotics could be a novel therapeutic approach. A systems perspective is needed to help understand the complex host-bacteria interactions and their association with pathophysiological phenotypes so that alterations in the composition of the gut microbiota in disease states can be reversed. In this article, we describe the therapeutic rationale and potential for targeting the gut microbiota, and discuss strategies and systems-oriented technologies for achieving this goal.
                Bookmark

                Author and article information

                Contributors
                zsxfst@163.com
                shaoling.lin@fafu.edu.cn
                Journal
                Food Sci Nutr
                Food Sci Nutr
                10.1002/(ISSN)2048-7177
                FSN3
                Food Science & Nutrition
                John Wiley and Sons Inc. (Hoboken )
                2048-7177
                28 January 2019
                February 2019
                : 7
                : 2 ( doiID: 10.1002/fsn3.2019.7.issue-2 )
                : 579-588
                Affiliations
                [ 1 ] College of Food Science Fujian Agriculture and Forestry University Fuzhou China
                [ 2 ] Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch Fujian Agriculture and Forestry University Fuzhou China
                [ 3 ] School of Life Sciences The Chinese University of Hong Kong Shatin Hong Kong S.A.R. China
                Author notes
                [*] [* ] Correspondence

                Shaoxiao Zeng and Shaoling Lin, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.

                Emails: zsxfst@ 123456163.com and shaoling.lin@ 123456fafu.edu.cn

                Author information
                http://orcid.org/0000-0001-7631-1006
                Article
                FSN3868
                10.1002/fsn3.868
                6392816
                30847137
                ab8a339e-1a40-4415-a1e3-77bcd44d3cab
                © 2019 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 August 2018
                : 02 October 2018
                : 04 October 2018
                Page count
                Figures: 5, Tables: 4, Pages: 10, Words: 5738
                Funding
                Funded by: China Postdoctoral Science Foundation
                Award ID: 2018M63072
                Funded by: Research Fund for Taiwan‐Straits Postdoctoral Exchange Program
                Award ID: 2018B003
                Categories
                Original Research
                Original Research
                Custom metadata
                2.0
                fsn3868
                February 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.0 mode:remove_FC converted:27.02.2019

                body weight,chlorogenic acid,gut microbiota,obesity
                body weight, chlorogenic acid, gut microbiota, obesity

                Comments

                Comment on this article