86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease.

          Related collections

          Most cited references226

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis: now and the future.

          Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoporosis

            The Lancet, 367(9527), 2010-2018
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis.

              Reports of the bone-protective effects of resveratrol, a naturally occurring phytoestrogen and agonist for the longevity gene SIRT1, have highlighted this compound as a candidate for therapy of osteoporosis. Moreover, SIRT1 antagonism enhances adipogenesis. There has been speculation that resveratrol can promote osteogenesis through SIRT1, but the mechanism remains unclear. In this study we investigated the molecular mechanism of how resveratrol can modulate the lineage commitment of human mesenchymal stem cells to osteogenesis other than adipogenesis. We found that resveratrol promoted spontaneous osteogenesis but prevented adipogenesis in human embryonic stem cell-derived mesenchymal progenitors. Resveratrol upregulated the expression of osteo-lineage genes RUNX2 and osteocalcin while suppressing adipo-lineage genes PPARγ2 and LEPTIN in adipogenic medium. Furthermore, we found that the osteogenic effect of resveratrol was mediated mainly through SIRT1/FOXO3A with a smaller contribution from the estrogenic pathway. Resveratrol activated SIRT1 activity and enhanced FOXO3A protein expression, a known target of SIRT1, in an independent manner. As a result, resveratrol increased the amount of the SIRT1-FOXO3A complex and enhanced FOXO3A-dependent transcriptional activity. Ectopic overexpression or silencing of SIRT1/FOXO3A expression regulated RUNX2 promoter activity, suggesting an important role for SIRT1-FOXO3A complex in regulating resveratrol-induced RUNX2 gene transcription. Further mutational RUNX2 promoter analysis and chromatin immunoprecipitation assay revealed that resveratrol-induced SIRT1-FOXO3A complex bound to a distal FOXO response element (-1269/-1263), an action that transactivated RUNX2 promoter activity in vivo. Taken together, our results describe a novel mechanism of resveratrol in promoting osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. Copyright © 2011 American Society for Bone and Mineral Research.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2012
                31 December 2012
                31 December 2012
                : 2012
                : 364604
                Affiliations
                1Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
                2Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
                3School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
                Author notes
                *Qiao-Yan Zhang: zqy1965@ 123456163.com and

                Academic Editor: Olumayokun A. Olajide

                Article
                10.1155/2012/364604
                3551255
                23365596
                abddb795-fe1d-42ce-b936-afe18e2c3369
                Copyright © 2012 Min Jia et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 August 2012
                : 30 October 2012
                Categories
                Review Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article