11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mucosal defences against Giardia

      Parasite Immunology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Giardia lamblia (syn. G. duodenalis or G. intestinalis), the causative agent of giardiasis, is one of the most common causes worldwide of intestinal infections in humans. Symptomatic infection is characterized by diarrhoea, epigastric pain, nausea, vomiting, and weight loss, yet many infections are asymptomatic. The protozoan, unicellular parasite resides in the lumen and attaches to the epithelium and overlying mucus layers but does not invade the mucosa and causes little or no mucosal inflammation. Giardiasis is normally transient, indicating the existence of effective host defences, although re-infections can occur, which may be related to differences in infecting parasites and/or incomplete immune protection. Mucosal defences against Giardia must act in the small intestinal lumen in the absence of induction by classical inflammatory mediators. Secretory IgA antibodies have a central role in anti-giardial defence. B cell-independent mechanisms also exist and can contribute to eradication of the parasite, although their identity and physiological importance are poorly understood currently. Possible candidates are nitric oxide, antimicrobial peptides such as Paneth cell alpha-defensins, and lactoferrin. Elucidation of the key anti-giardial effector mechanisms will be important for selecting the best adjuvants in the rational development of vaccination strategies against Giardia.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Biology of Giardia lamblia.

          R D Adam (2001)
          Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5' and 3' untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria.

            Paneth cells in mouse small intestinal crypts secrete granules rich in microbicidal peptides when exposed to bacteria or bacterial antigens. The dose-dependent secretion occurs within minutes and alpha-defensins, or cryptdins, account for 70% of the released bactericidal peptide activity. Gram-negative bacteria, Gram-positive bacteria, lipopolysaccharide, lipoteichoic acid, lipid A and muramyl dipeptide elicit cryptdin secretion. Live fungi and protozoa, however, do not stimulate degranulation. Thus intestinal Paneth cells contribute to innate immunity by sensing bacteria and bacterial antigens, and discharge microbicidal peptides at effective concentrations accordingly.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity.

              F C Fang (1997)
                Bookmark

                Author and article information

                Journal
                Parasite Immunology
                Parasite Immunol
                Wiley
                0141-9838
                1365-3024
                May 2003
                May 2003
                : 25
                : 5
                : 259-270
                Article
                10.1046/j.1365-3024.2003.00634.x
                12969444
                acbef43b-0d80-4990-8774-194b8a533963
                © 2003

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article