1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic interactions in dilute aqueous solutions between alginate and tropical vegetal hydrocolloids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Encapsulation in alginate beads has always been limited by the leakage due to the too wide distribution of pore sizes. Mixing alginate with other polymers have sometimes reduced the problem. Hydrocolloids from seven tropical vegetal species (barks of Triumfetta cordifolia and Bridelia thermifolia, seeds of Irvingia gabonensis and Beilschmiedia obscura, and leaves of Ceratotheca sesamoides, Adansonia digitata and Corchorus olitorius) were screened for synergistic interactions with alginate in dilute aqueous solution. Mixtures with alginate were made at different volume proportions and deviations from the initial viscosity set at 1 were evaluated. In distilled water, the gums from T. cordifolia, B. obscura, C. sesamoides and C. olitorius presented synergies with alginate. In 2 mM calcium chloride, the seven gums showed positive synergy. Interactions are favored by gum flexibility and the presence of charges, although high charges reduced the interactions. Alginate fraction of maximum viscosity enhancement depends on the ability to conformational order of the gum. The measure by laser diffraction of alginate-gum particles sizes at different fractions showed that the cooperative interactions did not always involve the largest complexes formed in gums associations. The occurrence of these interactions predicts the formation of homogeneous mixed gels at higher polymer and calcium concentrations.

          Abstract

          Food Science; Food Technology; Physical Chemistry; Alginate; Calcium Chloride; Synergistic interactions; Tropical vegetal gums.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Classification, processing and application of hydrogels: A review.

          This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Functional Biopolymer Particles: Design, Fabrication, and Applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of chitosan determines its interactions with mucin.

              Synthetic and natural mucoadhesive biomaterials in optimized galenical formulations are potentially useful for the transmucosal delivery of active ingredients to improve their localized and prolonged effects. Chitosans (CS) have potent mucoadhesive characteristics, but the exact mechanisms underpinning such interactions at the molecular level and the role of the specific structural properties of CS remain elusive. In the present study we used a combination of microviscosimetry, zeta potential analysis, isothermal titration calorimetry (ITC) and fluorescence quenching to confirm that the soluble fraction of porcine stomach mucin interacts with CS in water or 0.1 M NaCl (at c < c*; relative viscosity, η(rel), ∼ 2.0 at pH 4.5 and 37 °C) via a heterotypic stoichiometric process significantly influenced by the degree of CS acetylation (DA). We propose that CS-mucin interactions are driven predominantly by electrostatic binding, supported by other forces (e.g., hydrogen bonds and hydrophobic association) and that the DA influences the overall conformation of CS and thus the nature of the resulting complexes. Although the conditions used in this model system are simpler than the typical in vivo environment, the resulting knowledge will enable the rational design of CS-based nanostructured materials for specific transmucosal drug delivery (e.g., for Helicobacter pylori stomach therapy).
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                06 July 2020
                July 2020
                06 July 2020
                : 6
                : 7
                : e04348
                Affiliations
                [a ]Department of Applied Chemistry, The University of Ngaoundere, P.O Box 455 Ngaoundere, Cameroon
                [b ]Department of Food Science and Nutrition, The University of Ngaoundere, P.O Box 455 Ngaoundere, Cameroon
                Author notes
                []Corresponding author. rndjouenkeu@ 123456gmail.com
                Article
                S2405-8440(20)31192-0 e04348
                10.1016/j.heliyon.2020.e04348
                7341354
                32671260
                ad09ee58-1d56-4cf6-aa09-ef56a79d2447
                © 2020 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 3 March 2020
                : 17 April 2020
                : 25 June 2020
                Categories
                Article

                food science,food technology,physical chemistry,alginate,calcium chloride,synergistic interactions,tropical vegetal gums

                Comments

                Comment on this article