15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tetranychus urticae ( T. urticae) Koch is a cosmopolitan, polyphagous mite which causes economic losses in both agricultural and ornamental plants. Some traits of T. urticae hamper its management, including a short life cycle, arrhenotokous parthenogenesis, its haplodiploid sex determination system, and its extraordinary ability to adapt to different hosts and environmental conditions. Currently, the use of chemical and biological control are the major control methods used against this mite. In recent years, some studies have focused on plant defence mechanisms against herbivores. Various families of plant compounds (such as flavonoids, glucosinolates, or acyl sugars) have been shown to behave as acaricides. Plants can be induced upon appropriate stimuli to increase their resistance against spider mites. This knowledge, together with the understanding of mechanisms by which T. urticae detoxifies and adapts to pesticides, may complement the control of this pest. Herein, we describe plant volatile compounds (VOCs) with repellent activity, and new findings about defence priming against spider mites, which interfere with the T. urticae performance. The use of VOCs and defence priming can be integrated into current management practices and reduce the damage caused by T. urticae in the field by implementing new, more sustainable crop management tools.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defense Priming: An Adaptive Part of Induced Resistance

            Priming is an adaptive strategy that improves the defensive capacity of plants. This phenomenon is marked by an enhanced activation of induced defense mechanisms. Stimuli from pathogens, beneficial microbes, or arthropods, as well as chemicals and abiotic cues, can trigger the establishment of priming by acting as warning signals. Upon stimulus perception, changes may occur in the plant at the physiological, transcriptional, metabolic, and epigenetic levels. This phase is called the priming phase. Upon subsequent challenge, the plant effectively mounts a faster and/or stronger defense response that defines the postchallenge primed state and results in increased resistance and/or stress tolerance. Priming can be durable and maintained throughout the plant's life cycle and can even be transmitted to subsequent generations, therefore representing a type of plant immunological memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Airborne signals prime plants against insect herbivore attack.

              Green leafy volatiles (GLV), six-carbon aldehydes, alcohols, and esters commonly emitted by plants in response to mechanical damage or herbivory, induced intact undamaged corn seedlings to rapidly produce jasmonic acid (JA) and emit sesquiterpenes. More importantly, corn seedlings previously exposed to GLV from neighboring plants produced significantly more JA and volatile sesquiterpenes when mechanically damaged and induced with caterpillar regurgitant than seedlings not exposed to GLV. The use of pure synthetic chemicals revealed that (Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate have nearly identical priming activity. Caterpillar-induced nocturnal volatiles, which are enriched in GLV, also exhibited a strong priming effect, inducing production of larger amounts of JA and release of greater quantities of volatile organic compounds after caterpillar regurgitant application. In contrast, GLV priming did not affect JA production induced by mechanical wounding alone. Thus, GLV specifically prime neighboring plants against impending herbivory by enhancing inducible chemical defense responses triggered during attack and may play a key role in plant-plant signaling and plant-insect interactions.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                21 February 2018
                February 2018
                : 19
                : 2
                : 614
                Affiliations
                [1 ]Departament de Ciències Agràries i del Medi Natural. Campus del Riu Sec, Metabolic Integration and Cell Signalling Group, Universitat Jaume I (UJI), E-12071-Castelló de la Plana, Spain; bagut@ 123456uji.es (B.A.); pastorm@ 123456uji.es (V.P.)
                [2 ]Departament de Ciències Agràries i del Medi Natural, Unitat Associada d’Entomologia IVIA-UJI, Universitat Jaume I (UJI), Campus del Riu Sec; E-12071-Castelló de la Plana, Spain
                Author notes
                [* ]Correspondence: josep.jaques@ 123456camn.uji.es (J.A.J.); flors@ 123456uji.es (V.F.); Tel.: +34-964728038 (J.A.J.); +34-964729417 (V.F.)
                Author information
                https://orcid.org/0000-0003-3750-4184
                https://orcid.org/0000-0003-1353-1727
                https://orcid.org/0000-0003-3974-9652
                Article
                ijms-19-00614
                10.3390/ijms19020614
                5855836
                29466295
                adb1a2a6-9d5e-4f62-82d7-6a0d7ac0ce11
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 December 2017
                : 18 February 2018
                Categories
                Review

                Molecular biology
                tetranychus urticae,plant defence,spider mites,herbivore-induced plant volatiles,indirect defences

                Comments

                Comment on this article