58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Machine learning classification has been the most important computational development in the last years to satisfy the primary need of clinicians for automatic early diagnosis and prognosis. Nowadays, Random Forest (RF) algorithm has been successfully applied for reducing high dimensional and multi-source data in many scientific realms. Our aim was to explore the state of the art of the application of RF on single and multi-modal neuroimaging data for the prediction of Alzheimer's disease.

          Methods: A systematic review following PRISMA guidelines was conducted on this field of study. In particular, we constructed an advanced query using boolean operators as follows: (“random forest” OR “random forests”) AND neuroimaging AND (“alzheimer's disease” OR alzheimer's OR alzheimer) AND (prediction OR classification) . The query was then searched in four well-known scientific databases: Pubmed, Scopus, Google Scholar and Web of Science.

          Results: Twelve articles—published between the 2007 and 2017—have been included in this systematic review after a quantitative and qualitative selection. The lesson learnt from these works suggest that when RF was applied on multi-modal data for prediction of Alzheimer's disease (AD) conversion from the Mild Cognitive Impairment (MCI), it produces one of the best accuracies to date. Moreover, the RF has important advantages in terms of robustness to overfitting, ability to handle highly non-linear data, stability in the presence of outliers and opportunity for efficient parallel processing mainly when applied on multi-modality neuroimaging data, such as, MRI morphometric, diffusion tensor imaging, and PET images.

          Conclusions: We discussed the strengths of RF, considering also possible limitations and by encouraging further studies on the comparisons of this algorithm with other commonly used classification approaches, particularly in the early prediction of the progression from MCI to AD.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found

          Deep Learning in Medical Image Analysis

          This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            An empirical comparison of supervised learning algorithms

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.

              Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for conversion to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting the MCI-to-AD conversion from one to three years before the clinical diagnosis. First, we developed a novel MRI biomarker of MCI-to-AD conversion using semi-supervised learning and then integrated it with age and cognitive measures about the subjects using a supervised learning algorithm resulting in what we call the aggregate biomarker. The novel characteristics of the methods for learning the biomarkers are as follows: 1) We used a semi-supervised learning method (low density separation) for the construction of MRI biomarker as opposed to more typical supervised methods; 2) We performed a feature selection on MRI data from AD subjects and normal controls without using data from MCI subjects via regularized logistic regression; 3) We removed the aging effects from the MRI data before the classifier training to prevent possible confounding between AD and age related atrophies; and 4) We constructed the aggregate biomarker by first learning a separate MRI biomarker and then combining it with age and cognitive measures about the MCI subjects at the baseline by applying a random forest classifier. We experimentally demonstrated the added value of these novel characteristics in predicting the MCI-to-AD conversion on data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. With the ADNI data, the MRI biomarker achieved a 10-fold cross-validated area under the receiver operating characteristic curve (AUC) of 0.7661 in discriminating progressive MCI patients (pMCI) from stable MCI patients (sMCI). Our aggregate biomarker based on MRI data together with baseline cognitive measurements and age achieved a 10-fold cross-validated AUC score of 0.9020 in discriminating pMCI from sMCI. The results presented in this study demonstrate the potential of the suggested approach for early AD diagnosis and an important role of MRI in the MCI-to-AD conversion prediction. However, it is evident based on our results that combining MRI data with cognitive test results improved the accuracy of the MCI-to-AD conversion prediction.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                06 October 2017
                2017
                : 9
                : 329
                Affiliations
                [1] 1Institute of Bioimaging and Molecular Physiology, National Research Council , Catanzaro, Italy
                [2] 2Institute of Neurology, University Magna Graecia , Catanzaro, Italy
                Author notes

                Edited by: Juan Manuel Gorriz, University of Granada, Spain

                Reviewed by: Stavros I. Dimitriadis, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, United Kingdom; Feng Liu, Tianjin Medical University General Hospital, China

                *Correspondence: Alessia Sarica sarica@ 123456unicz.it
                Article
                10.3389/fnagi.2017.00329
                5635046
                29056906
                add233dc-b95e-49b5-b546-ddb4e12558d1
                Copyright © 2017 Sarica, Cerasa and Quattrone.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 June 2017
                : 22 September 2017
                Page count
                Figures: 3, Tables: 1, Equations: 1, References: 41, Pages: 12, Words: 9103
                Categories
                Neuroscience
                Review

                Neurosciences
                random forest,alzheimer's disease,mild cognitive impairment,neuroimaging,classification

                Comments

                Comment on this article