4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques

      , ,
      Plants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, increased attention has been paid to natural sources as raw materials for the development of new added-value products. Flavonoids are a large family of polyphenols which include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory, antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Current trends of research and development on flavonoids relate to identification, extraction, isolation, physico-chemical characterization, and their applications to health benefits. This review presents an up-to-date survey of the most recent developments in the natural flavonoid classes, the biological activity of representative flavonoids, current extraction techniques, and perspectives.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Techniques for extraction and isolation of natural products: a comprehensive review

          Natural medicines were the only option for the prevention and treatment of human diseases for thousands of years. Natural products are important sources for drug development. The amounts of bioactive natural products in natural medicines are always fairly low. Today, it is very crucial to develop effective and selective methods for the extraction and isolation of those bioactive natural products. This paper intends to provide a comprehensive view of a variety of methods used in the extraction and isolation of natural products. This paper also presents the advantage, disadvantage and practical examples of conventional and modern techniques involved in natural products research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application

            Quercetin is a bioactive compound that is widely used in botanical medicine and traditional Chinese medicine due to its potent antioxidant activity. In recent years, antioxidant activities of quercetin have been studied extensively, including its effects on glutathione (GSH), enzymatic activity, signal transduction pathways, and reactive oxygen species (ROS) caused by environmental and toxicological factors. Chemical studies on quercetin have mainly focused on the antioxidant activity of its metal ion complexes and complex ions. In this review, we highlight the recent advances in the antioxidant activities, chemical research, and medicinal application of quercetin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Luteolin, a flavonoid, as an anticancer agent: A review

              Many food-derived phytochemicals and their derivatives represent a cornucopia of new anti-cancer compounds. Luteolin (3,4,5,7-tetrahydroxy flavone) is a flavonoid found in different plants such as vegetables, medicinal herbs, and fruits. It acts as an anticancer agent against various types of human malignancies such as lung, breast, glioblastoma, prostate, colon, and pancreatic cancers. It also blocks cancer development in vitro and in vivo by inhibition of proliferation of tumor cells, protection from carcinogenic stimuli, and activation of cell cycle arrest, and by inducing apoptosis through different signaling pathways. Luteolin can additionally reverse epithelial-mesenchymal transition (EMT) through a mechanism that involves cytoskeleton shrinkage, induction of the epithelial biomarker E-cadherin expression, and by down-regulation of the mesenchymal biomarkers N-cadherin, snail, and vimentin. Furthermore, luteolin increases levels of intracellular reactive oxygen species (ROS) by activation of lethal endoplasmic reticulum stress response and mitochondrial dysfunction in glioblastoma cells, and by activation of ER stress-associated proteins expressions, including phosphorylation of eIF2α, PERK, CHOP, ATF4, and cleaved-caspase 12. Accordingly, the present review article summarizes the progress of recent research on luteolin against several human cancers.
                Bookmark

                Author and article information

                Contributors
                Journal
                PLANCD
                Plants
                Plants
                MDPI AG
                2223-7747
                July 2023
                July 23 2023
                : 12
                : 14
                : 2732
                Article
                10.3390/plants12142732
                10384615
                37514347
                aebaff62-fd64-48f5-98fc-79d6093d3837
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article