1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A PilZ-Containing Chemotaxis Receptor Mediates Oxygen and Wheat Root Sensing in Azospirillum brasilense

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotactic bacteria sense environmental changes via dedicated receptors that bind to extra- or intracellular cues and relay this signal to ultimately alter direction of movement toward beneficial cues and away from harmful environments. In complex environments, such as the rhizosphere, bacteria must be able to sense and integrate diverse cues. Azospirillum brasilense is a microaerophilic motile bacterium that promotes growth of cereals and grains. Root surface colonization is a prerequisite for the beneficial effects on plant growth but how motile A. brasilense navigates the rhizosphere is poorly studied. Previously only 2 out of 51 A. brasilense chemotaxis receptors have been characterized, AerC and Tlp1, and only Tlp1 was found to be essential for wheat root colonization. Here we describe another chemotaxis receptor, named Aer, that is homologous to the Escherichia coli Aer receptor, likely possesses an FAD cofactor and is involved in aerotaxis (taxis in an air gradient). We also found that the A. brasilense Aer contributes to sensing chemical gradients originating from wheat roots. In addition to A. brasilense Aer having a putative N-terminal FAD-binding PAS domain, it possesses a C-terminal PilZ domain that contains all the conserved residues for binding c-di-GMP. Mutants lacking the PilZ domain of Aer are altered in aerotaxis and are completely null in wheat root colonization and they also fail to sense gradients originating from wheat roots. The PilZ domain of Aer is also vital in integrating Aer signaling with signaling from other chemotaxis receptors to sense gradients from wheat root surfaces and colonizing wheat root surfaces.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Making sense of it all: bacterial chemotaxis.

          Bacteria must be able to respond to a changing environment, and one way to respond is to move. The transduction of sensory signals alters the concentration of small phosphorylated response regulators that bind to the rotary flagellar motor and cause switching. This simple pathway has provided a paradigm for sensory systems in general. However, the increasing number of sequenced bacterial genomes shows that although the central sensory mechanism seems to be common to all bacteria, there is added complexity in a wide range of species.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Root exudation and rhizosphere biology.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic features of bacterial adaptation to plants

              Plants intimately associate with diverse bacteria. Plant-associated (PA) bacteria have ostensibly evolved genes enabling adaptation to the plant environment. However, the identities of such genes are mostly unknown and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3837 bacterial genomes to identify thousands of PA gene clusters. Genomes of PA bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant associated genomes. We experimentally validated candidates from two sets of PA genes, one involved in plant colonization, the other serving in microbe-microbe competition between PA bacteria. We also identified 64 PA protein domains that potentially mimic plant domains; some are shared with PA fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides leads for efficient and sustainable agriculture through microbiome engineering.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                01 March 2019
                2019
                : 10
                : 312
                Affiliations
                Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville , Knoxville, TN, United States
                Author notes

                Edited by: Daniel Perez-Mendoza, Estación Experimental del Zaidín (EEZ), Spain

                Reviewed by: Beatriz Eugenia Baca, Benemérita Universidad Autónoma de Puebla, Mexico; Tino Krell, Estación Experimental del Zaidín (EEZ), Spain

                *Correspondence: Gladys Alexandre, galexan2@ 123456utk.edu

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00312
                6406031
                30881352
                aef015ef-c77c-44f9-9c91-a0d63adec0cf
                Copyright © 2019 O’Neal, Akhter and Alexandre.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2018
                : 05 February 2019
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 43, Pages: 10, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                azospirillum,aerotaxis,c-di-gmp,plant-microbe association,pilz
                Microbiology & Virology
                azospirillum, aerotaxis, c-di-gmp, plant-microbe association, pilz

                Comments

                Comment on this article