13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intrinsically disordered proteins (IDPs) are associated with various diseases and have been proposed as promising drug targets. However, conventional structure-based approaches cannot be applied directly to IDPs, due to their lack of ordered structures. Here, we describe a novel computational approach to virtually screen for compounds that can simultaneously bind to different IDP conformations. The test system used c-Myc, an oncoprotein containing a disordered basic helix-loop-helix-leucine zipper (bHLH-LZ) domain that adopts a helical conformation upon binding to Myc-associated factor X (Max). For the virtual screen, we used three binding pockets in representative conformations of c-Myc 370–409, which is part of the disordered bHLH-LZ domain. Seven compounds were found to directly bind c-Myc 370–409 in vitro, and four inhibited the growth of the c-Myc-overexpressing cells by affecting cell cycle progression. Our approach of IDP conformation sampling, binding site identification, and virtual screening for compounds that can bind to multiple conformations provides a useful strategy for structure-based drug discovery targeting IDPs.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm.

          A major challenge in the post-genome era will be determination of the functions of the encoded protein sequences. Since it is generally assumed that the function of a protein is closely linked to its three-dimensional structure, prediction or experimental determination of the library of protein structures is a matter of high priority. However, a large proportion of gene sequences appear to code not for folded, globular proteins, but for long stretches of amino acids that are likely to be either unfolded in solution or adopt non-globular structures of unknown conformation. Characterization of the conformational propensities and function of the non-globular protein sequences represents a major challenge. The high proportion of these sequences in the genomes of all organisms studied to date argues for important, as yet unknown functions, since there could be no other reason for their persistence throughout evolution. Clearly the assumption that a folded three-dimensional structure is necessary for function needs to be re-examined. Although the functions of many proteins are directly related to their three-dimensional structures, numerous proteins that lack intrinsic globular structure under physiological conditions have now been recognized. Such proteins are frequently involved in some of the most important regulatory functions in the cell, and the lack of intrinsic structure in many cases is relieved when the protein binds to its target molecule. The intrinsic lack of structure can confer functional advantages on a protein, including the ability to bind to several different targets. It also allows precise control over the thermodynamics of the binding process and provides a simple mechanism for inducibility by phosphorylation or through interaction with other components of the cellular machinery. Numerous examples of domains that are unstructured in solution but which become structured upon binding to the target have been noted in the areas of cell cycle control and both transcriptional and translational regulation, and unstructured domains are present in proteins that are targeted for rapid destruction. Since such proteins participate in critical cellular control mechanisms, it appears likely that their rapid turnover, aided by their unstructured nature in the unbound state, provides a level of control that allows rapid and accurate responses of the cell to changing environmental conditions. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intrinsically disordered proteins from A to Z.

            The ideas that proteins might possess specific functions without being uniquely folded into rigid 3D-structures and that these floppy polypeptides might constitute a noticeable part of any given proteome would have been considered as a preposterous fiction 15 or even 10 years ago. The situation has changed recently, and the existence of functional yet intrinsically disordered proteins and regions has become accepted by a significant number of protein scientists. These fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting and attractive targets for modern protein research. This review summarizes some of the major discoveries and breakthroughs in the field of intrinsic disorder by representing related concepts and definitions. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of allostery by protein intrinsic disorder

              Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical 1 and empirical 2 observations indicate that allostery is also manifest in intrinsically disordered proteins (IDPs), which account for a significant proportion of the proteome 3,4 . Many IDPs are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub IDP 5 . E1A can induce drastic epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators like the general transcriptional coactivator CREB binding protein (CBP), its paralog p300, and the retinoblastoma protein (pRb) 6,7 . Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub IDP interaction networks. Here, we utilized single-molecule Förster/fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved essential for these studies, which are challenging due to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions display either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary vs. binary E1A complexes, and may permit a context-specific tuning of associated downstream signaling outputs. Such a modulation of allosteric interactions is likely a common mechanism in molecular hub IDP function.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                02 March 2016
                2016
                : 6
                : 22298
                Affiliations
                [1 ]BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
                [2 ]Beijing Nuclear Magnetic Resonance Center, Peking University , Beijing 100871, China
                [3 ]College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
                [4 ]Center for Quantitative Biology, Peking University , Beijing 100871, China
                [5 ]Peking-Tsinghua Center for Life Sciences, Peking University , Beijing 100871, China
                Author notes
                Article
                srep22298
                10.1038/srep22298
                4773988
                26931396
                afce6714-e555-41ae-9bc4-cedf40909b0f
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 October 2015
                : 11 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article