3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immunometabolic rewiring of tubular epithelial cells in kidney disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          A guide to immunometabolism for immunologists.

          In recent years a substantial number of findings have been made in the area of immunometabolism, by which we mean the changes in intracellular metabolic pathways in immune cells that alter their function. Here, we provide a brief refresher course on six of the major metabolic pathways involved (specifically, glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism), giving specific examples of how precise changes in the metabolites of these pathways shape the immune cell response. What is emerging is a complex interplay between metabolic reprogramming and immunity, which is providing an extra dimension to our understanding of the immune system in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial energetics in the kidney

            Mitochondria provide the kidney with energy to remove waste from the blood and regulate fluid and electrolyte balance. This Review discusses how mitochondrial homeostasis is maintained, the changes in mitochondrial energetics that occur in acute kidney injury and diabetic nephropathy, and how targeting mitochondrial energetics might aid the treatment of renal disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The NLRP3 inflammasome: a sensor for metabolic danger?

              Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Nephrology
                Nat Rev Nephrol
                Springer Science and Business Media LLC
                1759-5061
                1759-507X
                July 07 2022
                Article
                10.1038/s41581-022-00592-x
                35798902
                b071d903-5430-476d-83c7-d90a3ab46357
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article