5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression

      , , , ,
      Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          The Tumor Microenvironment Innately Modulates Cancer Progression

          Cancer development and progression occurs in concert with alterations in the surrounding stroma. Cancer cells can functionally sculpt their microenvironment through the secretion of various cytokines, chemokines, and other factors. This results in a reprogramming of the surrounding cells, enabling them to play a determinative role in tumor survival and progression. Immune cells are important constituents of the tumor stroma and critically take part in this process. Growing evidence suggests that the innate immune cells (macrophages, neutrophils, dendritic cells, innate lymphoid cells, myeloid-derived suppressor cells, and NK cells) as well as adaptive immune cells (T cells and B cells) contribute to tumor progression when present in the tumor microenvironment (TME). Crosstalk between cancer cells and the proximal immune cells ultimately results in an environment that fosters tumor growth and metastasis. Understanding the nature of this dialog will allow for improved therapeutics that simultaneously target multiple components of the TME, increasing the likelihood of favorable patient outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumour-associated macrophages as treatment targets in oncology

            Tumour-associated macrophages (TAMs) are key drivers of tumour-promoting inflammation and cancer progression, and are important determinants of responsiveness to a range of therapies. Herein, the authors summarize the roles of TAMs in cancer, and discuss the potential of TAM-targeted therapeutic strategies to complement and synergize with other anticancer treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myeloid-derived suppressor cells as regulators of the immune system.

              Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases. In this Review, we discuss the origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit.
                Bookmark

                Author and article information

                Journal
                Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
                Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
                Elsevier BV
                0304419X
                September 2022
                September 2022
                : 1877
                : 5
                : 188761
                Article
                10.1016/j.bbcan.2022.188761
                35850277
                b11a2887-c5bb-4e84-a3da-c0fcc3fb6e2a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article