2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome‐wide marker effect heterogeneity is associated with a large effect dormancy locus in winter malting barley

      1 , 1 , 1
      The Plant Genome
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d3575122e67">Prediction of trait values in plant breeding populations typically relies on assumptions about marker effect homogeneity across populations. Evidence is presented for winter malting barley (Hordeum vulgare L.) germination traits that a single, causative, large-effect gene in the Seed dormancy 1 region on Chromosome 5H, HvAlaAT1 (Qsd1), leads to heterogeneous estimated marker effects genome wide between groups of otherwise related individuals carrying different Qsd1 alleles. This led to reduced prediction accuracy across alleles when a model was trained either on individuals carrying both alleles or one allele. Several genomic prediction models were tested to increase prediction accuracy within the Qsd1 allele groups. Small gains (5-12%) in prediction accuracy were realized using structured genomic best linear unbiased predictor models when information about the Qsd1 allele was used to stratify the population. We concluded that a single large-effect locus can lead to heterogeneous marker effects in the same breeding family. Variance partitioning based on large-effect loci can be used to inform best practices in designing genomic prediction models; however, there are likely few cases for which it may be practical to do this. For malting barley, if germination traits are highly associated with malting quality traits, then similar steps should be considered for malting quality trait prediction. </p>

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          TASSEL: software for association mapping of complex traits in diverse samples.

          Association analyses that exploit the natural diversity of a genome to map at very high resolutions are becoming increasingly important. In most studies, however, researchers must contend with the confounding effects of both population and family structure. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure. For result interpretation, the program allows for linkage disequilibrium statistics to be calculated and visualized graphically. Database browsing and data importation is facilitated by integrated middleware. Other features include analyzing insertions/deletions, calculating diversity statistics, integration of phenotypic and genotypic data, imputing missing data and calculating principal components.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

            Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high-performance computing toolset for relatedness and principal component analysis of SNP data.

              Genome-wide association studies are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. We developed gdsfmt and SNPRelate (R packages for multi-core symmetric multiprocessing computer architectures) to accelerate two key computations on SNP data: principal component analysis (PCA) and relatedness analysis using identity-by-descent measures. The kernels of our algorithms are written in C/C++ and highly optimized. Benchmarks show the uniprocessor implementations of PCA and identity-by-descent are ∼8-50 times faster than the implementations provided in the popular EIGENSTRAT (v3.0) and PLINK (v1.07) programs, respectively, and can be sped up to 30-300-fold by using eight cores. SNPRelate can analyse tens of thousands of samples with millions of SNPs. For example, our package was used to perform PCA on 55 324 subjects from the 'Gene-Environment Association Studies' consortium studies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The Plant Genome
                The Plant Genome
                Wiley
                1940-3372
                1940-3372
                December 2022
                August 16 2022
                December 2022
                : 15
                : 4
                Affiliations
                [1 ]Plant Breeding and Genetics Section, School of Integrative Plant Sciences Cornell Univ. Ithaca NY 14853 USA
                Article
                10.1002/tpg2.20247
                35971877
                b12a4cff-0d54-466d-884e-d4a79307c913
                © 2022

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article