1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of supplementation rate of an extruded dried distillers’ grains cube fed to growing heifers on voluntary intake and digestibility of bermudagrass hay

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our objectives were to 1) investigate the difference in chemical composition and disappearance kinetics between loose dried distillers’ grains (DDG) and extruded DDG cubes and 2) evaluate the effects of supplementation rate of extruded DDG cubes on voluntary dry matter intake (DMI), rate and extent of digestibility, and blood parameters of growing beef heifers offered ad libitum bermudagrass (Cynodon dactylon) hay. To characterize the changes in chemical composition during the extrusion process, loose and extruded DDG were evaluated via near-infrared reflectance spectroscopy, and dry matter (DM) disappearance kinetics were evaluated via time point in situ incubations. Extruded DDG cubes had greater (P ≤ 0.01) contents of fat, neutral detergent insoluble crude protein, and total digestible nutrients, but lower (P ≤ 0.01) neutral and acid detergent fiber than loose DDG. Additionally, the DM of extruded DDG cubes was more immediately soluble (P < 0.01), had greater (P < 0.01) effective degradability and lag time, and tended (P = 0.07) to have a greater disappearance rate than loose DDG. In the 29-d supplementation rate study, 23 Charolais-cross heifers were randomly assigned to one of four supplemental treatments: 1) control, no supplement; 2) low, 0.90 kg DDG cubes per d; 3) intermediate, 1.81 kg DDG cubes per d; or 4) high, 3.62 kg DDG cubes per d. Titanium dioxide was used as an external marker to estimate fecal output and particulate passage rate (Kp). Blood was collected from each animal to determine supplementation effects on blood metabolites. Indigestible neutral detergent fiber was used as an internal marker to assess the rate and extent of hay and diet DM digestibility (DMD). Increasing supplementation rate increased Kp and total diet DMI linearly (P < 0.01), yet linearly decreased (P < 0.01) hay DMI. Hay DMD decreased quadratically (P < 0.01), while total diet DMD increased linearly (P < 0.01) with increased DDG cube inclusion. Supplemented heifers had greater (P = 0.07) blood urea nitrogen concentrations than control animals 4 h post-supplementation. Intermediate and high rates of supplementation resulted in lower (P < 0.01) serum nonesterified fatty acid concentrations post-supplementation than control heifers. Concentrations of serum glucose and lactate were greatest (P ≤ 0.06) 8 h post-supplementation. Our results suggest that extruded DDG cubes may be an adequate supplement for cattle consuming moderate-quality forage, and further research is warranted.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Nutritional Ecology of the Ruminant

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Animal Science
                Oxford University Press (OUP)
                0021-8812
                1525-3163
                May 01 2022
                May 01 2022
                March 23 2022
                May 01 2022
                May 01 2022
                March 23 2022
                : 100
                : 5
                Affiliations
                [1 ]Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078-5061, USA
                [2 ]Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
                Article
                10.1093/jas/skac097
                b141b7d7-f58d-423e-b77a-a2ea43d9773c
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article