21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Expression of Ret-, p75NTR-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut

      , , ,  
      Developmental Dynamics
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cells of the enteric nervous system are derived from the neural crest. Probes to a number of molecules identify neural crest-derived cells within the gastrointestinal tract of embryonic mice prior to their differentiation into neurons and glial cells. However, it is unclear whether the different markers are identifying all neural crest-derived cells. In this study the distribution of p75(NTR)-immunoreactivity was compared with that of Ret-, Phox2a-, Phox2b-, and tyrosine hydroxylase (TH) in undifferentiated neural crest-derived cells in the E10.5-E13.5 mouse intestine. Neural crest-derived cells colonise the embryonic mouse gut in a rostral-to-caudal wave between E9.5-E14, and differentiation into enteric neurons also occurs in a rostral-to-caudal wave. Thus, the most caudal neural crest-derived cells within the gut are undifferentiated. These most caudal neural crest-derived cells co-expressed p75(NTR)-, Phox2b- and Ret-immunoreactivity; at E10.5 a sub-population was also TH-positive. The most caudal cells did not show Phox2a-immunoreactivity at any stage. However, a sub-population of cells, which was rostral to the undifferentiated neural crest-derived cells, was Phox2a-positive, and these are likely to be cells beginning to differentiate along a neuronal lineage. The expression of Ret-, Phox2a-, Phox2b- and p75(NTR)-immunoreactivity by two classes of enteric neurons that differentiate prior to birth was also examined. Nitric oxide synthase (NOS) neurons showed Phox2b and Ret immunoreactivity at all ages, and Phox2a and p75(NTR) immunoreactivity only transiently. Calcitonin gene-related peptide (CGRP) neurons showed Phox2b and Ret-immunoreactivity, but not Phox2a immunoreactivity. It is concluded that all undifferentiated neural crest-derived cells initially express Phox2b, Ret, and p75(NTR); a sub-population of these cells also expresses TH transiently. Those cells that are beginning to differentiate along a neuronal lineage maintain their expression of Phox2b and Ret, and they start to express Phox2a, but down-regulate p75(NTR); those cells that differentiate along a glial lineage down-regulate Ret and maintain their expression of p75(NTR). Dev Dyn 1999;216:137-152. Copyright 1999 Wiley-Liss, Inc.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives.

          The sympathetic, parasympathetic and enteric ganglia are the main components of the peripheral autonomic nervous system, and are all derived from the neural crest. The factors needed for these structures to develop include the transcription factor Mash1, the glial-derived neurotrophic factor GNDF and its receptor subunits, and the neuregulin signalling system, each of which is essential for the differentiation and survival of subsets of autonomic neurons. Here we show that all autonomic ganglia fail to form properly and degenerate in mice lacking the homeodomain transcription factor Phox2b, as do the three cranial sensory ganglia that are part of the autonomic reflex circuits. In the anlagen of the enteric nervous system and the sympathetic ganglia, Phox2b is needed for the expression of the GDNF-receptor subunit Ret and for maintaining Mash1 expression. Mutant ganglionic anlagen also fail to switch on the genes that encode two enzymes needed for the biosynthesis of the neurotransmitter noradrenaline, dopamine-beta-hydroxylase and tyrosine hydroxylase, demonstrating that Phox2b regulates the noradrenergic phenotype in vertebrates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model.

            Hirschsprung disease (HSCR, MIM #142623) is a multigenic neurocristopathy (neural crest disorder) characterized by absence of enteric ganglia in a variable portion of the distal colon. Subsets of HSCR individuals also present with neural crest-derived melanocyte deficiencies (Hirschsprung-Waardenburg, HSCR-WS, MIM #277580). Murine models have been instrumental in the identification and analysis of HSCR disease genes. These include mice with deficiencies of endothelin B receptor (Ednrb(s-l); refs 1,2) endothelin 3 (Edn3(ls): refs 1,3) the tyrosine kinase receptor cRet and glial-derived neurotrophic factor. Another mouse model of HSCR disease, Dom, arose spontaneously at the Jackson Laboratory. While Dom/+ heterozygous mice display regional deficiencies of neural crest-derived enteric ganglia in the distal colon, Dom/Dom homozygous animals are embryonic lethal. We have determined that premature termination of Sox10, a member of the SRY-like HMG box family of transcription factors, is responsible for absence of the neural crest derivatives in Dom mice. We demonstrate expression of Sox10 in normal neural crest cells, disrupted expression of both Sox10 and the HSCR disease gene Ednrb in Dom mutant embryos, and loss of neural crest derivatives due to apoptosis. Our studies suggest that Sox10 is essential for proper peripheral nervous system development. We propose SOX10 as a candidate disease gene for individuals with HSCR whose disease does not have an identified genetic origin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease.

              The spontaneous mouse mutant Dominant megacolon (Dom) is a valuable model for the study of human congenital megacolon (Hirschsprung disease). Here we report that the defect in the Dom mouse is caused by mutation of the gene encoding the Sry-related transcription factor Sox10. This assignment is based on (i) colocalization of the Sox10 gene with the Dom mutation on chromosome 15; (ii) altered Sox10 expression in the gut and in neural-crest derived structures of cranial ganglia of Dom mice; (iii) presence of a frameshift in the Sox10 coding region, and (iv) functional inactivation of the resulting truncated protein. These results identify the transcriptional regulator Sox10 as an essential factor in mouse neural crest development and as a further candidate gene for human Hirschsprung disease, especially in cases where it is associated with features of Waardenburg syndrome.
                Bookmark

                Author and article information

                Journal
                Developmental Dynamics
                Dev. Dyn.
                Wiley
                1058-8388
                1097-0177
                October 1999
                October 1999
                : 216
                : 2
                : 137-152
                Article
                10.1002/(SICI)1097-0177(199910)216:2<137::AID-DVDY5>3.0.CO;2-6
                10536054
                b17b82da-2a3f-48bc-b98e-bdd20cb1a00a
                © 1999

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article