2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A systematic review and meta-analysis on the prevalence of vancomycin-resistant enterococci (VRE) among Nigerians

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Enterococci are opportunistic pathogens and are one of the most important bacteria in hospital-acquired infections. Their resistance to antibiotics such as vancomycin has led to life-threatening and difficult-to-treat nosocomial infections. The true prevalence in clinical settings in Nigeria is not well known due to the lack of a comprehensive antibiotic surveillance system. This study aims to estimate the prevalence of vancomycin-resistant enterococci (VRE) in clinical infections in Nigeria.

          Methods:

          Databases (PubMed, African Journal Online, and Google scholar) were searched following the Preferred Reporting Items for Systematic review and meta-analysis protocols (PRISMA-P) 2015 statements for articles reporting VRE prevalence, and were published before August 5, 2020. Data from the studies were extracted and analyzed using Microsoft Excel and Comprehensive Meta-Analysis (CMA 3.0), respectively. The pooled prevalence of VRE was estimated with the random-effects model and the 95% confidence interval (CI). The heterogeneity level was assessed using Cochran Q and I 2 tests.

          Results:

          A total of 35 articles were scanned for eligibility, among which 7 were included in the study after fulfilling the eligibility criteria. The studies analyzed a total of 832 enterococci isolates and 90 VRE strains. The prevalence of Enterococcus faecium and E faecalis in this study are 361 (59.3%) and 248 (40.7%), respectively, among which 41 (63.1%) of the E faecium and 24 (36.9%) of the E faecalis were vancomycin resistant. The pooled prevalence of VRE was estimated at (95% CI; 10.0–53.9%; I 2 = 93.50%; P < .001). The highest prevalence of VRE was reported from western Nigeria, 14.6% (95% CI; I 2 = 97.27; P < .001).

          Conclusion:

          The prevalence of VRE in Nigeria according to the reports from this study is relatively high. The report of this study should help policymakers to put in place measures that will help curb the spread of VRE and associated resistant genes to other important clinical pathogens like Staphylococcus aureus.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying heterogeneity in a meta-analysis.

          The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity. Copyright 2002 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota-mediated colonization resistance against intestinal pathogens.

              Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.
                Bookmark

                Author and article information

                Journal
                Porto Biomed J
                PJ9
                Porto Biomedical Journal
                Lippincott Williams & Wilkins (Hagerstown, MD )
                2444-8664
                2444-8672
                Jan-Feb 2021
                11 February 2021
                : 6
                : 1
                : e125
                Affiliations
                [a ]Department of Microbiology, University of Lagos, Akoka Yaba, Lagos, Nigeria
                [b ]Department of Microbiology in Public Health, University of Bedfordshire, Luton, Bedfordshire, United Kingdom
                Author notes
                []Corresponding author. Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria. E-mail address: oluwatosinorababa@ 123456gmail.com (Oluwatosin Qawiyy Orababa).

                Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

                Article
                PBJ-D-20-00118 00019
                10.1097/j.pbj.0000000000000125
                8055482
                33884321
                b17fd717-6007-424b-9a60-2b89e90a1427
                Copyright © 2021 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of PBJ-Associação Porto Biomedical/Porto Biomedical Society. All rights reserved.

                This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0

                History
                : 14 October 2020
                : 30 November 2020
                Categories
                Review Article
                Custom metadata
                TRUE

                antibiotic resistance,e faecalis,e faecium,enterococcus,nigeria,vancomycin-resistant enterococci

                Comments

                Comment on this article