7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Nucleolus: In Genome Maintenance and Repair

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis.

          The tumor suppressor p53 exerts its anti-neoplastic activity primarily through the induction of apoptosis. We found that cytosolic localization of endogenous wild-type or trans-activation-deficient p53 was necessary and sufficient for apoptosis. p53 directly activated the proapoptotic Bcl-2 protein Bax in the absence of other proteins to permeabilize mitochondria and engage the apoptotic program. p53 also released both proapoptotic multidomain proteins and BH3-only proteins [Proapoptotic Bcl-2 family proteins that share only the third Bcl-2 homology domain (BH3)] that were sequestered by Bcl-xL. The transcription-independent activation of Bax by p53 occurred with similar kinetics and concentrations to those produced by activated Bid. We propose that when p53 accumulates in the cytosol, it can function analogously to the BH3-only subset of proapoptotic Bcl-2 proteins to activate Bax and trigger apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p53 has a direct apoptogenic role at the mitochondria.

            p53 induces apoptosis by target gene regulation and transcription-independent signaling. However, a mechanism for the latter was unknown. We recently reported that a fraction of induced p53 translocates to the mitochondria of apoptosing tumor cells. Targeting p53 to mitochondria is sufficient to launch apoptosis. Here, we provide evidence that p53 translocation to the mitochondria occurs in vivo in irradiated thymocytes. Further, we show that the p53 protein can directly induce permeabilization of the outer mitochondrial membrane by forming complexes with the protective BclXL and Bcl2 proteins, resulting in cytochrome c release. p53 binds to BclXL via its DNA binding domain. We probe the significance of mitochondrial p53 and show that tumor-derived transactivation-deficient mutants of p53 concomitantly lose the ability to interact with BclXL and promote cytochrome c release. This opens the possibility that mutations might represent "double-hits" by abrogating the transcriptional and mitochondrial apoptotic activity of p53.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses.

              p53 protects against cancer through its capacity to induce cell cycle arrest or apoptosis under a large variety of cellular stresses. It is not known how such diversity of signals can be integrated by a single molecule. However, the literature reveals that a common denominator in all p53-inducing stresses is nucleolar disruption. We thus postulated that the impairment of nucleolar function might stabilize p53 by preventing its degradation. Using micropore irradiation, we demonstrate that large amounts of nuclear DNA damage fail to stabilize p53 unless the nucleolus is also disrupted. Forcing nucleolar disruption by anti-upstream binding factor (UBF) microinjection (in the absence of DNA damage) also causes p53 stabilization. We propose that the nucleolus is a stress sensor responsible for maintenance of low levels of p53, which are automatically elevated as soon as nucleolar function is impaired in response to stress. Our model integrates all known p53-inducing agents and also explains cell cycle-related variations in p53 levels which correlate with established phases of nucleolar assembly/disassembly through the cell cycle.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                01 July 2017
                July 2017
                : 18
                : 7
                : 1411
                Affiliations
                [1 ]Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece; mtsekre@ 123456imbb.forth.gr (M.T.); callina@ 123456imbb.forth.gr (K.S.)
                [2 ]Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece
                Author notes
                [* ]Correspondence: georgiach@ 123456imbb.forth.gr ; Tel.: +30-2810391072
                Article
                ijms-18-01411
                10.3390/ijms18071411
                5535903
                28671574
                b1d2499f-9feb-4e63-a88f-686306cd11e9
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 May 2017
                : 27 June 2017
                Categories
                Review

                Molecular biology
                nucleolus,dna repair,nucleus,ribosomal dna
                Molecular biology
                nucleolus, dna repair, nucleus, ribosomal dna

                Comments

                Comment on this article