0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Early detection and surgical treatment are essential to achieve a good outcome in gastric cancer (GC). Stage IV and recurrent GC have a poor prognosis. Therefore, new treatments for GC are needed. We investigated the intestinal microbiome of GC patients and attempted to reverse the immunosuppression of the immune and cancer cells of GC patients through the modulation of microbiome metabolites. We evaluated the levels of programmed death-ligand 1 (PD-L1) and interleukin (IL)-10 in the peripheral blood immunocytes of GC patients. Cancer tissues were obtained from patients who underwent surgical resection of GC, and stained sections of cancer tissues were visualized via confocal microscopy. The intestinal microbiome was analyzed using stool samples of healthy individuals and GC patients. Patient-derived avatar model was developed by injecting peripheral blood mononuclear cells (PBMCs) from advanced GC (AGC) patients into NSG mice, followed by injection of AGS cells. PD-L1 and IL-10 had higher expression levels in immune cells of GC patients than in those of healthy controls. The levels of immunosuppressive factors were increased in the immune and tumor cells of tumor tissues of GC patients. The abundances of Faecalibacterium and Bifidobacterium in the intestinal flora were lower in GC patients than in healthy individuals. Butyrate, a representative microbiome metabolite, suppressed the expression levels of PD-L1 and IL-10 in immune cells. In addition, the PBMCs of AGC patients showed increased levels of immunosuppressive factors in the avatar mouse model. Butyrate inhibited tumor growth in mice. Restoration of the intestinal microbiome and its metabolic functions inhibit tumor growth and reverse the immunosuppression due to increased PD-L1 and IL-10 levels in PBMCs and tumor cells of GC patients.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients

              Pre-clinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-PD-1 immunotherapy (n=112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders (R) versus non-responders (NR). Analysis of patient fecal microbiome samples (n=43, 30R, 13NR) showed significantly higher alpha diversity (p<0.01) and relative abundance of Ruminococcaceae bacteria (p<0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in R including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and anti-tumor immunity in responding patients with a favorable gut microbiome, as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                10 January 2024
                2024
                10 January 2024
                : 16
                : 1
                : 2300846
                Affiliations
                [a ]Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea; , Seoul, Korea
                [b ]Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea; , Seoul, Korea
                [c ]Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea; , Seoul, Korea
                [d ]Departments of Immunobiology and Neurology, Yale School of Medicine; , New Haven, CT, USA
                [e ]Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University; , Chuncheon, Korea
                [f ]Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea; , Seoul, Korea
                [g ]Division of Gastrointestinal Surgery, Department of Surgery, Yeouido St. Mary’s Hospital; , Seoul, Korea
                [h ]Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea; , Seoul, Korea
                Author notes
                CONTACT Kyo Young Song skys9615@ 123456gmail.com Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea; , Seoul 06591, Korea
                Mi-La Cho iammila@ 123456catholic.ac.kr Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea; , Seoul 06591, Korea
                Author information
                https://orcid.org/0000-0001-5715-3989
                Article
                2300846
                10.1080/19490976.2023.2300846
                10793689
                38197259
                b248eff6-92a8-4cec-ab5e-be071edfbe6b
                © 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 6, Tables: 1, References: 54, Pages: 1
                Categories
                Research Article
                Research Paper

                Microbiology & Virology
                gastric cancer,pd-l1,il-10,microbiome,butyrate,avatar model,faecalibacterium prausnitzii

                Comments

                Comment on this article