3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic Dissection of Parallel Sister-Chromatid Cohesion Pathways

      , ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sister-chromatid cohesion, the process of pairing replicated chromosomes during mitosis and meiosis, is mediated through the essential cohesin complex and a number of nonessential cohesion genes, but the specific roles of these nonessential genes in sister-chromatid cohesion remain to be clarified. We analyzed sister-chromatid cohesion in double mutants of mrc1Delta, tof1Delta, and csm3Delta and identified additive cohesion defects that indicated the existence of at least two pathways that contribute to sister-chromatid cohesion. To understand the relationship of other nonessential cohesion genes with respect to these two pathways, pairwise combinations of deletion and temperature-sensitive alleles were tested for cohesion defects. These data defined two cohesion pathways, one containing CSM3, TOF1, CTF4, and CHL1, and the second containing MRC1, CTF18, CTF8, and DCC1. Furthermore, we found that the nonessential genes are not important for the maintenance of cohesion at G(2)/M. Thus, our data suggest that nonessential cohesion genes make critical redundant contributions to the establishment of sister-chromatid cohesion and define two cohesion pathways, thereby establishing a framework for understanding the role of nonessential genes in sister-chromatid cohesion.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Cohesins: chromosomal proteins that prevent premature separation of sister chromatids.

          Cohesion between sister chromatids opposes the splitting force exerted by microtubules, and loss of this cohesion is responsible for the subsequent separation of sister chromatids during anaphase. We describe three chromosmal proteins that prevent premature separation of sister chromatids in yeast. Two, Smc1p and Smc3p, are members of the SMC family, which are putative ATPases with coiled-coil domains. A third protein, which we call Scc1p, binds to chromosomes during S phase, dissociates from them at the metaphase-to-anaphase transition, and is degraded by the anaphase promoting complex. Association of Scc1p with chromatin depends on Smc1p. Proteins homologous to Scc1p exist in a variety of eukaryotic organisms including humans. A common cohesion apparatus might be used by all eukaryotic cells during both mitosis and meiosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins.

            Cohesion between sister chromatids depends on a multisubunit cohesin complex that binds to chromosomes around DNA replication and dissociates from them at the onset of anaphase. Scc2p, though not a cohesin subunit, is also required for sister chromatid cohesion. We show here that Scc2p forms a complex with a novel protein, Scc4p, which is also necessary for sister cohesion. In scc2 or scc4 mutants, cohesin complexes form normally but fail to bind both to centromeres and to chromosome arms. Our data suggest that a major role for the Scc2p/Scc4p complex is to facilitate the loading of cohesin complexes onto chromosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks.

              The components of the replisome that preserve genomic stability by controlling the progression of eukaryotic DNA replication forks are poorly understood. Here, we show that the GINS (go ichi ni san) complex allows the MCM (minichromosome maintenance) helicase to interact with key regulatory proteins in large replisome progression complexes (RPCs) that are assembled during initiation and disassembled at the end of S phase. RPC components include the essential initiation and elongation factor, Cdc45, the checkpoint mediator Mrc1, the Tof1-Csm3 complex that allows replication forks to pause at protein-DNA barriers, the histone chaperone FACT (facilitates chromatin transcription) and Ctf4, which helps to establish sister chromatid cohesion. RPCs also interact with Mcm10 and topoisomerase I. During initiation, GINS is essential for a specific subset of RPC proteins to interact with MCM. GINS is also important for the normal progression of DNA replication forks, and we show that it is required after initiation to maintain the association between MCM and Cdc45 within RPCs.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                July 19 2007
                July 2007
                July 2007
                May 04 2007
                : 176
                : 3
                : 1417-1429
                Article
                10.1534/genetics.107.072876
                1931553
                17483413
                b27b8fa7-3907-4317-bd75-e32d943b8259
                © 2007
                History

                Comments

                Comment on this article