22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Channel opening and gating mechanism in AMPA-subtype glutamate receptors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          AMPA-subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission throughout the central nervous system. Gated by the neurotransmitter glutamate, AMPA receptors are critical for synaptic strength and dysregulation of AMPA receptor-mediated signaling is linked to numerous neurological diseases. Here, we use cryo-electron microscopy to solve the structures of AMPA receptor-auxiliary subunit complexes in the apo, antagonist and agonist-bound states and elucidate the iris-like mechanism of ion channel opening. The ion channel selectivity filter is formed by the extended portions of the re-entrant M2 loops, while the helical portions of M2 contribute to extensive hydrophobic interfaces between AMPA receptor subunits in the ion channel. We show how the permeation pathway changes upon channel opening and identify conformational changes throughout the entire AMPA receptor that accompany activation and desensitization. Our findings provide a framework for understanding gating across the family of ionotropic glutamate receptors and the role of AMPA receptors in excitatory neurotransmission.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          TRPV1 structures in distinct conformations reveal mechanisms of activation

          TRP channels are polymodal signal detectors that respond to a wide range of physical and chemical stimuli. Elucidating how these channels integrate and convert physiological signals into channel opening is essential to understanding how they regulate cell excitability under normal and pathophysiological conditions. Here we exploit pharmacological probes (a peptide toxin and small vanilloid agonists) to determine structures of two activated states of the capsaicin receptor, TRPV1. A domain (S1-S4) that moves during activation of voltage-gated channels remains stationary in TRPV1, highlighting differences in gating mechanisms for these structurally related channel superfamilies. TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism. Allosteric coupling between upper and lower gates may account for rich physiologic modulation exhibited by TRPV1 and other TRP channels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

            Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins.

              Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                19 July 2017
                24 July 2017
                07 September 2017
                24 January 2018
                : 549
                : 7670
                : 60-65
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168 th Street, New York, NY 10032
                [2 ]Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, 650 West 168 th Street, New York, NY 10032
                [3 ]Department of Biological Sciences, Columbia University, 650 West 168 th Street, New York, NY 10032
                [4 ]Howard Hughes Medical Institute, 650 West 168 th Street, New York, NY 10032
                Author notes

                Correspondence and requests for materials should be addressed to A.I.S. ( as4005@ 123456cumc.columbia.edu ).

                Article
                NIHMS893287
                10.1038/nature23479
                5743206
                28737760
                b350fa24-e486-4018-971b-d492ff02d5a2

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                Reprints and permissions information are available at www.nature.com/reprints.

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article