17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reemergence of Murine Typhus in Galveston, Texas, USA, 2013

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twelve patients with murine typhus were identified in Galveston, Texas, USA, in 2013. An isolate from 1 patient was confirmed to be Rickettsia typhi. Reemergence of murine typhus in Galveston emphasizes the importance of vector control and awareness of this disease by physicians and public health officials.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes.

          DNA sequences from specific genes, amplified by the polymerase chain reaction technique, were used as substrata for nonisotopic restriction endonuclease fragment length polymorphism differentiation of rickettsial species and genotypes. The products amplified using a single pair of oligonucleotide primers (derived from a rickettsial citrate synthase gene sequence) and cleaved with restriction endonucleases were used to differentiate almost all recognized species of rickettsiae. A second set of primers was used for differentiation of all recognized species of closely related spotted fever group rickettsiae. The procedure circumvents many technical obstacles previously associated with identification of rickettsial species. Multiple amplified DNA digest patterns were used to estimate the intraspecies nucleotide sequence divergence for the genes coding for rickettsial citrate synthase and a large antigen-coding gene of the spotted fever group rickettsiae. The estimated relationships deduced from these genotypic data correlate reasonably well with established rickettsial taxonomic schemes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB).

            To confirm the phylogenetic analysis previously inferred by comparison of the citrate synthase and rOmpA gene sequences (gitA and ompA, respectively), the rOmpB gene (ompB) of 24 strains of the genus Rickettsia was amplified and sequenced. rOmpB is an outer-membrane protein of high molecular mass, the presence of which can be demonstrated in most rickettsiae by immunological cross-reactivity in Western blots. No PCR amplification was obtained with Rickettsia bellii or Rickettsia canadensis. For the other rickettsiae, phylogenetic analysis was inferred from the comparison of both the gene and derived protein sequences by using parsimony, maximum-likelihood and neighbour-joining methods which gave the same organization. All nodes were well supported (>86% bootstrap values), except in the cluster including Rickettsia africae strain S and Rickettsia parkeri, and this analysis confirmed the previously established phylogeny obtained from combining results from gltA and ompA. Based on phylogenetic data, the current classification of the genus Rickettsia is inappropriate, specifically its division into two groups, typhus and spotted fever. Integration of phenotypic, genotypic and phylogenetic data will contribute to the definition of a polyphasic taxonomy as has been done for other bacterial genera.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flea-borne rickettsioses: ecologic considerations.

              Ecologic and economic factors, as well as changes in human behavior, have resulted in the emergence of new and the reemergence of existing but forgotten infectious diseases during the past 20 years. Flea-borne disease organisms (e.g., Yersinia pestis, Rickettsia typhi, R. felis, and Bartonella henselae) are widely distributed throughout the world in endemic-disease foci, where components of the enzootic cycle are present. However, flea-borne diseases could reemerge in epidemic form because of changes in vector-host ecology due to environmental and human behavior modification. The changing ecology of murine typhus in southern California and Texas over the past 30 years is a good example of urban and suburban expansion affecting infectious disease outbreaks. In these areas, the classic rat-flea-rat cycle of R. typhi has been replaced by a peridomestic animal cycle involving, e.g., free-ranging cats, dogs, and opossums and their fleas. In addition to the vector-host components of the murine typhus cycle, we have uncovered a second typhuslike rickettsia, R. felis. This agent was identified from the blood of a hospitalized febrile patient and from opossums and their fleas. We reviewed the ecology of R. typhi and R. felis and present recent data relevant to the vector biology, immunology, and molecular characterization and phylogeny of flea-borne rickettsioses.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                March 2015
                : 21
                : 3
                : 484-486
                Affiliations
                [1]University of Texas Medical Branch, Galveston, Texas, USA
                Author notes
                Address for correspondence: Lucas S. Blanton, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0435, USA; email: lsblanto@ 123456utmb.edu
                Article
                14-0716
                10.3201/eid2103.140716
                4344263
                25695758
                b41a9226-2de3-4318-97fd-6bb55ccf6889
                History
                Categories
                Dispatch
                Dispatch
                Reemergence of Murine Typhus in Galveston, Texas, USA, 2013

                Infectious disease & Microbiology
                rickettsia typhi,rickettsioses,murine typhus,rats,fleas,ectoparasites,vector-borne infections,vectorborne,flea-borne,fleaborne,xenopsylla cheopis,galveston,texas,bacteria,rickettsia,ticks

                Comments

                Comment on this article