43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Teeth and tooth-like structures, together named odontodes, are repeated organs thought to share a common evolutionary origin. These structures can be found in gnathostomes at different locations along the body: oral teeth in the jaws, teeth and denticles in the oral-pharyngeal cavity, and dermal denticles on elasmobranch skin. We, and other colleagues, had previously shown that teeth in any location were serially homologous because: i) pharyngeal and oral teeth develop through a common developmental module; and ii) the expression patterns of the Dlx genes during odontogenesis were highly divergent between species but almost identical between oral and pharyngeal dentitions within the same species. Here we examine Dlx gene expression in oral teeth and dermal denticles in order to test the hypothesis of serial homology between these odontodes.

          Results

          We present a detailed comparison of the first developing teeth and dermal denticles (caudal primary scales) of the dogfish ( Scyliorhinus canicula) and show that both odontodes develop through identical stages that correspond to the common stages of oral and pharyngeal odontogenesis. We identified six Dlx paralogs in the dogfish and found that three showed strong transcription in teeth and dermal denticles ( Dlx3, Dlx4 and Dlx5) whereas a weak expression was detected for Dlx1 in dermal denticles and teeth, and for Dlx2 in dermal denticles. Very few differences in Dlx expression patterns could be detected between tooth and dermal denticle development, except for the absence of Dlx2 expression in teeth.

          Conclusions

          Taken together, our histological and expression data strongly suggest that teeth and dermal denticles develop from the same developmental module and under the control of the same set of Dlx genes. Teeth and dermal denticles should therefore be considered as serial homologs developing through the initiation of a common gene regulatory network (GRN) at several body locations. This mechanism of heterotopy supports the 'inside and out' model that has been recently proposed for odontode evolution.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation.

          Vertebrate organogenesis is initiated at sites that are often morphologically indistinguishable from the surrounding region. Here we have identified Pax9 as a marker for prospective tooth mesenchyme prior to the first morphological manifestation of odontogenesis. We provide evidence that the sites of Pax9 expression in the mandibular arch are positioned by the combined activity of two signals, one (FGF8) that induces Pax9 expression and the other (BMP2 and BMP4) that prevents this induction. Thus it appears that the position of the teeth is determined by a combination of two different types of signaling molecules produced in wide but overlapping domains rather than by a single localized inducer. We suggest that a similar mechanism may be used for specifying the sites of development of other organs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach.

            Osteichthyan and chondrichthyan fish present an astonishing diversity of skeletal and dental tissues that are often difficult to classify into the standard textbook categories of bone, cartilage, dentine and enamel. To address the question of how the tissues of the dermal skeleton evolved from the ancestral situation and gave rise to the diversity actually encountered, we review previous data on the development of a number of dermal skeletal elements (odontodes, teeth and dermal denticles, cranial dermal bones, postcranial dermal plates and scutes, elasmoid and ganoid scales, and fin rays). A comparison of developmental stages at the tissue level usually allows us to identify skeletogenic cell populations as either odontogenic or osteogenic on the basis of the place of formation of their dermal papillae and of the way of deposition of their tissues. Our studies support the evolutionary affinities (1) between odontodes, teeth and denticles, (2) between the ganoid scales of polypterids and the elasmoid scales of teleosts, and (3) to a lesser degree between the different bony elements. There is now ample evidence to ascertain that the tissues of the elasmoid scale are derived from dental and not from bony tissues. This review demonstrates the advantage that can be taken from developmental studies, at the tissue level, to infer evolutionary relationships within the dermal skeleton in chondrichthyans and osteichthyans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues.

              The vertebrate tooth is covered with enamel in most sarcopterygians or enameloid in chondrichthyans and actinopterygians. The evolutionary relationship among these two tissues, the hardest tissue in the body, and other mineralized tissues has long been controversial. We have recently reported that specific combinations of secretory calcium-binding phosphoprotein (SCPP) genes are involved in the mineralization of bone, dentin, enameloid, and enamel. Thus, the early repertoire of SCPP genes would elucidate the evolutionary relationship across these tissues. However, the diversity of SCPP genes in teleosts and tetrapods and the roles of these genes in distinct tissues have remained unclear, mainly because many SCPP genes are lineage-specific. In this study, I show that the repertoire of SCPP genes in the zebrafish, frog, and humans includes many lineage-specific genes and some widely conserved genes that originated in stem osteichthyans or earlier. Expression analysis demonstrates that some frog and zebrafish SCPP genes are used primarily in bone, but also in dentin, while the reverse is true of other genes, similar to some mammalian SCPP genes. Dentin and enameloid initially use shared genes in the matrix, but enameloid is subsequently hypermineralized. Notably, enameloid and enamel use an orthologous SCPP gene in the hypermineralization process. Thus, the hypermineralization machinery ancestral to both enameloid and enamel arose before the actinopterygian-sarcopterygian divergence. However, enamel employs specialized SCPPs as structuring proteins, not used in enameloid, reflecting the divergence of enamel from enameloid. These results show graded differences in mineralized dental tissues and reinforce the hypothesis that bone-dentin-enameloid-enamel constitutes an evolutionary continuum.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                18 October 2011
                : 11
                : 307
                Affiliations
                [1 ]Evolution des familles multigéniques, Laboratoire Evolution Génome et Spéciation, UPR9034 CNRS, 1 avenue de la terrasse, 91198 Gif-sur-Yvette, France
                [2 ]UFR des Sciences du Vivant, Université Paris Diderot Sorbonne Paris Cité, 5 rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
                [3 ]UFR Sciences, Université Paris-Sud 11, 91405 Orsay Cedex, France
                [4 ]Laboratoire Neurobiologie et Développement, Institut de Neurobiologie Alfred Fessard, UPR3294 CNRS, 1 avenue de la terrasse, 91198 Gif-sur-Yvette, France
                [5 ]Département Forme, Institut des Sciences de l'Evolution - Montpellier, UMR5554 CNRS/Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier cedex05, France
                [6 ]Evolution et développement des chordés, Biologie Intégrative des Organismes Marins, UMR7232 CNRS/UMPC Université Paris 6, Observatoire océanologique, Avenue du Fontaulé, 66650 Banyuls-sur-Mer, France
                Article
                1471-2148-11-307
                10.1186/1471-2148-11-307
                3217942
                22008058
                b4fb7d56-c8e5-46fe-b0be-0d4ea250db20
                Copyright ©2011 Debiais-Thibaud et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 July 2011
                : 18 October 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article