33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multiscale metallic metamaterials

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Materials with three-dimensional micro- and nanoarchitectures exhibit many beneficial mechanical, energy conversion and optical properties. However, these three-dimensional microarchitectures are significantly limited by their scalability. Efforts have only been successful only in demonstrating overall structure sizes of hundreds of micrometres, or contain size-scale gaps of several orders of magnitude. This results in degraded mechanical properties at the macroscale. Here we demonstrate hierarchical metamaterials with disparate three-dimensional features spanning seven orders of magnitude, from nanometres to centimetres. At the macroscale they achieve high tensile elasticity (>20%) not found in their brittle-like metallic constituents, and a near-constant specific strength. Creation of these materials is enabled by a high-resolution, large-area additive manufacturing technique with scalability not achievable by two-photon polymerization or traditional stereolithography. With overall part sizes approaching tens of centimetres, these unique nanostructured metamaterials might find use in a broad array of applications.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Gold helix photonic metamaterial as broadband circular polarizer.

          We investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave. The structure is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The conflicts between strength and toughness.

            The attainment of both strength and toughness is a vital requirement for most structural materials; unfortunately these properties are generally mutually exclusive. Although the quest continues for stronger and harder materials, these have little to no use as bulk structural materials without appropriate fracture resistance. It is the lower-strength, and hence higher-toughness, materials that find use for most safety-critical applications where premature or, worse still, catastrophic fracture is unacceptable. For these reasons, the development of strong and tough (damage-tolerant) materials has traditionally been an exercise in compromise between hardness versus ductility. Drawing examples from metallic glasses, natural and biological materials, and structural and biomimetic ceramics, we examine some of the newer strategies in dealing with this conflict. Specifically, we focus on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture. We show how these new and natural materials can defeat the conflict of strength versus toughness and achieve unprecedented levels of damage tolerance within their respective material classes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultralight, ultrastiff mechanical metamaterials.

              The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale unit cells with high structural connectivity and nanoscale features, whose structural members are designed to carry loads in tension or compression. Production of these microlattices, with polymers, metals, or ceramics as constituent materials, is made possible by projection microstereolithography (an additive micromanufacturing technique) combined with nanoscale coating and postprocessing. We found that these materials exhibit ultrastiff properties across more than three orders of magnitude in density, regardless of the constituent material.
                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nature Mater
                Springer Science and Business Media LLC
                1476-1122
                1476-4660
                October 2016
                July 18 2016
                October 2016
                : 15
                : 10
                : 1100-1106
                Article
                10.1038/nmat4694
                27429209
                b50b86db-8d10-451b-bf13-eb088c1935f5
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article