24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: There is an urgent need for accurate and fast diagnostic tests capable of identifying carbapenemase producers. Here, we assessed the performance of a new multiplex lateral flow assay (OKN K-SeT) for the rapid detection of OXA-48-like, KPC and NDM carbapenemase-producing Enterobacteriaceae from culture colonies.

          Methods: Two hundred collection isolates with characterized β-lactamase content and 183 non-duplicate consecutive isolates referred to two National Reference Centres over a 2 month period in 2016 were used to evaluate the OKN K-SeT assay.

          Results: The assay correctly detected all 42 OXA-48-like-, 27 KPC- and 30 NDM-producing isolates from the collection panel, including 7 isolates that co-produced NDM and OXA-181 carbapenemases. No cross-reactivity was observed with non-targeted carbapenemases ( n = 41) or with non-carbapenemase producers ( n = 60). Prospectively, all OXA-48-like ( n = 69), KPC ( n = 9) and NDM ( n = 19) carbapenemase-producing Enterobacteriaceae isolates were correctly detected, while 11 carbapenemase producers not targeted by the assay went undetected [VIM ( n = 8) and OXA-23/OXA-58-like ( n = 3)]. Overall, the sensitivity and specificity of the assay were 100%.

          Conclusions: The OKN assay is efficient, rapid and easy to implement in the workflow of a clinical microbiology laboratory for the confirmation of OXA-48, NDM and KPC carbapenemases. This test represents a powerful diagnostic tool as it enables the rapid detection of the most clinically important carbapenemases without the need for more costly and less frequently available molecular assays.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          OXA-48-like carbapenemases: the phantom menace.

          OXA-48-type carbapenem-hydrolysing class D β-lactamases are increasingly reported in enterobacterial species. To date, six OXA-48-like variants have been identified, with OXA-48 being the most widespread. They differ by a few amino acid substitutions or deletions (one to five amino acids). The enzymes hydrolyse penicillins at a high level and carbapenems at a low level, sparing broad-spectrum cephalosporins, and are not susceptible to β-lactamase inhibitors. When combining permeability defects, OXA-48-like producers may exhibit a high level of resistance to carbapenems. OXA-163 is an exception, hydrolysing broad-spectrum cephalosporins but carbapenems at a very low level, and being susceptible to β-lactamase inhibitors. The bla(OXA-48)-type genes are always plasmid-borne and have been identified in association with insertion sequences involved in their acquisition and expression. The current spread of the bla(OXA-48) gene is mostly linked to the dissemination of a single IncL/M-type self-transferable plasmid of 62 kb that does not carry any additional resistance gene. OXA-48-type carbapenemases have been identified mainly from North African countries, the Middle East, Turkey and India, those areas constituting the most important reservoirs; however, occurrence of OXA-48 producers in European countries is now well documented, with some reported hospital outbreaks. Since many OXA-48-like producers do not exhibit resistance to broad-spectrum cephalosporins, or only decreased susceptibility to carbapenems, their recognition and detection can be challenging. Adequate screening and detection methods are therefore required to prevent and control their dissemination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide.

            The spread of carbapenemase producers in Enterobacteriaceae has now been identified worldwide. Three main carbapenemases have been reported; they belong to three classes of β-lactamases, which are KPC, NDM, and OXA-48. The main reservoirs of KPC are Klebsiella pneumoniae in the USA, Israel, Greece, and Italy, those of NDM are K. pneumoniae and Escherichia coli in the Indian subcontinent, and those of OXA-48 are K. pneumoniae and Escherichia coli in North Africa and Turkey. KPC producers have been mostly identified among nosocomial isolates, whereas NDM and OXA-48 producers are both nosocomial and community-acquired pathogens. Control of their spread is still possible in hospital settings, and relies on the use of rapid diagnostic techniques and the strict implemention of hygiene measures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              “Stormy waters ahead”: global emergence of carbapenemases

              Carbapenems, once considered the last line of defense against of serious infections with Enterobacteriaceae, are threatened with extinction. The increasing isolation of carbapenem-resistant Gram-negative pathogens is forcing practitioners to rely on uncertain alternatives. As little as 5 years ago, reports of carbapenem resistance in Enterobacteriaceae, common causes of both community and healthcare-associated infections, were sporadic and primarily limited to case reports, tertiary care centers, intensive care units, and outbreak settings. Carbapenem resistance mediated by β-lactamases, or carbapenemases, has become widespread and with the paucity of reliable antimicrobials available or in development, international focus has shifted to early detection and infection control. However, as reports of Klebsiella pneumoniae carbapenemases, New Delhi metallo-β-lactamase-1, and more recently OXA-48 (oxacillinase-48) become more common and with the conveniences of travel, the assumption that infections with highly resistant Gram-negative pathogens are limited to the infirmed and the heavily antibiotic and healthcare exposed are quickly being dispelled. Herein, we provide a status report describing the increasing challenges clinicians are facing and forecast the “stormy waters” ahead.
                Bookmark

                Author and article information

                Journal
                J Antimicrob Chemother
                J. Antimicrob. Chemother
                jac
                Journal of Antimicrobial Chemotherapy
                Oxford University Press
                0305-7453
                1460-2091
                July 2017
                22 March 2017
                22 March 2017
                : 72
                : 7
                : 1955-1960
                Affiliations
                [1 ]Laboratory of Clinical Microbiology, National Reference Centre for Monitoring Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, Yvoir, Belgium
                [2 ]Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique/Hôpitaux de Paris, Le Kremlin-Bicêtre, France
                [3 ]Research Unit EA7361 ‘Structure, dynamic, function and expression of broad-spectrum β-lactamases’, Faculty of Medicine, Université Paris Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
                [4 ]Associated French National Reference Centre for Antibiotic Resistance, Le Kremlin-Bicêtre, France
                Author notes
                [* ]Corresponding author. Tel: +32-81-423-245; Fax: +32-81-423-246; E-mail: gerald.glupczynski@ 123456uclouvain.be
                Article
                dkx089
                10.1093/jac/dkx089
                5890672
                28369469
                b621b787-e521-4dd3-b43e-ac95dfa5f54e
                © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 24 January 2017
                : 21 February 2017
                : 27 February 2017
                : 27 February 2017
                Page count
                Pages: 6
                Funding
                Funded by: The Belgian National Reference Centre
                Funded by: Belgian Ministry of Social Affairs
                Funded by: Antimicrobial Resistance
                Funded by: Laboratory of Excellence LERMIT
                Categories
                Original Research
                Editor's Choice

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article