3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revisited role of the placenta in bile acid homeostasis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only “detergent molecules” required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle “not too much, not too little” applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Revised Estimates for the Number of Human and Bacteria Cells in the Body

          Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bile acids: regulation of synthesis.

            Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pleiotropic roles of bile acids in metabolism.

              Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration, and hepatocarcinogenesis. This review covers the roles of specific bile acids, synthetic agonists, and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                21 July 2023
                2023
                : 14
                : 1213757
                Affiliations
                Institute of Biochemistry and Molecular Medicine , University of Bern , Bern, Switzerland
                Author notes

                Edited by: Michelle M. Collins, University of Saskatchewan, Canada

                Reviewed by: Stephanie Wesolowski, University of Colorado, United States

                Sayee Anakk, University of Illinois at Urbana-Champaign, United States

                *Correspondence: Christiane Albrecht, christiane.albrecht@ 123456unibe.ch
                Article
                1213757
                10.3389/fphys.2023.1213757
                10402276
                b6395423-eed6-4b2f-94e1-7573305d02c8
                Copyright © 2023 Ontsouka, Schroeder and Albrecht.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 April 2023
                : 03 July 2023
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung , doi 10.13039/501100001711;
                Award ID: 310030_197408
                Funded by: Stiftung Lindenhof Bern , doi 10.13039/501100019901;
                This research was funded by the Swiss National Science Foundation [Grant No. 310030_197408, CA], the National Center of Competence in Research (NCCR) TransCure [Grant No 51NF40-185544, CA] as well as the Lindenhof Foundation, Bern, Switzerland [Grant No. 17-15-F, CA].
                Categories
                Physiology
                Review
                Custom metadata
                Developmental Physiology

                Anatomy & Physiology
                bile acid signaling,bile acid synthesis,fetal development,placenta,pregnancy
                Anatomy & Physiology
                bile acid signaling, bile acid synthesis, fetal development, placenta, pregnancy

                Comments

                Comment on this article