3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multilocus sequence typing (MLST), porA and flaA typing of Campylobacter jejuni isolated from cats attending a veterinary clinic

      brief-report
      1 , , 2 , 3
      BMC Research Notes
      BioMed Central
      Campylobacter, Pets, Cats, MLST, Genotyping, porA, flaA typing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Campylobacter is a major cause of gastroenteritis in humans and pet ownership is a risk factor for infection. To study the occurrence, species distribution and sequence-based types of Campylobacter spp. in pet cats, 82 faecal samples were collected from cats in New Zealand. The PCR positive samples of Campylobacter jejuni were characterized by multilocus sequence typing (MLST), major outer membrane protein gene ( porA) and flagellin A gene ( flaA) sequence typing.

          Results

          Seven faecal samples were tested positive for Campylobacter spp. (9%, or 4–17% at 95% confidence interval), of which six were identified as C. jejuni, and one was C. upsaliensis. The six C. jejuni isolates were characterised by MLST; four belonged to ST-45 clonal complex and two of the isolates could not be typed. Two flaA-SVR types were identified: three samples were flaA-SVR type 8 and one belonged to 239. By combining all data, three isolates were indistinguishable with allelic combinations of ST-45, flaA-SVR 8, porA 44, although no epidemiological connection between these isolates could be established. To conclude, healthy cats can carry C. jejuni, whose detected genetic diversity is limited. The isolated sequence type ST-45 is frequently reported in human illnesses.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.

          Traditional and molecular typing schemes for the characterization of pathogenic microorganisms are poorly portable because they index variation that is difficult to compare among laboratories. To overcome these problems, we propose multilocus sequence typing (MLST), which exploits the unambiguous nature and electronic portability of nucleotide sequence data for the characterization of microorganisms. To evaluate MLST, we determined the sequences of approximately 470-bp fragments from 11 housekeeping genes in a reference set of 107 isolates of Neisseria meningitidis from invasive disease and healthy carriers. For each locus, alleles were assigned arbitrary numbers and dendrograms were constructed from the pairwise differences in multilocus allelic profiles by cluster analysis. The strain associations obtained were consistent with clonal groupings previously determined by multilocus enzyme electrophoresis. A subset of six gene fragments was chosen that retained the resolution and congruence achieved by using all 11 loci. Most isolates from hyper-virulent lineages of serogroups A, B, and C meningococci were identical for all loci or differed from the majority type at only a single locus. MLST using six loci therefore reliably identified the major meningococcal lineages associated with invasive disease. MLST can be applied to almost all bacterial species and other haploid organisms, including those that are difficult to cultivate. The overwhelming advantage of MLST over other molecular typing methods is that sequence data are truly portable between laboratories, permitting one expanding global database per species to be placed on a World-Wide Web site, thus enabling exchange of molecular typing data for global epidemiology via the Internet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multilocus sequence typing system for Campylobacter jejuni.

            The gram-negative bacterium Campylobacter jejuni has extensive reservoirs in livestock and the environment and is a frequent cause of gastroenteritis in humans. To date, the lack of (i) methods suitable for population genetic analysis and (ii) a universally accepted nomenclature has hindered studies of the epidemiology and population biology of this organism. Here, a multilocus sequence typing (MLST) system for this organism is described, which exploits the genetic variation present in seven housekeeping loci to determine the genetic relationships among isolates. The MLST system was established using 194 C. jejuni isolates of diverse origins, from humans, animals, and the environment. The allelic profiles, or sequence types (STs), of these isolates were deposited on the Internet (http://mlst.zoo.ox.ac.uk), forming a virtual isolate collection which could be continually expanded. These data indicated that C. jejuni is genetically diverse, with a weakly clonal population structure, and that intra- and interspecies horizontal genetic exchange was common. Of the 155 STs observed, 51 (26% of the isolate collection) were unique, with the remainder of the collection being categorized into 11 lineages or clonal complexes of related STs with between 2 and 56 members. In some cases membership in a given lineage or ST correlated with the possession of a particular Penner HS serotype. Application of this approach to further isolate collections will enable an integrated global picture of C. jejuni epidemiology to be established and will permit more detailed studies of the population genetics of this organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Faeco-prevalence of Campylobacter jejuni in urban wild birds and pets in New Zealand

              Background Greater attention has been given to Campylobacter jejuni (C. jejuni) prevalence in poultry and ruminants as they are regarded as the major contributing reservoirs of human campylobacteriosis. However, relatively little work has been done to assess the prevalence in urban wild birds and pets in New Zealand, a country with the highest campylobacteriosis notification rates. Therefore, the aim of the study was to assess the faeco-prevalence of C. jejuni in urban wild birds and pets and its temporal trend in the Manawatu region of New Zealand. Findings A repeated cross-sectional study was conducted from April 2008 to July 2009, where faecal samples were collected from 906 ducks, 835 starlings, 23 Canadian goose, 2 swans, 2 pied stilts, 498 dogs and 82 cats. The faeco-prevalence of C. jejuni was 20% in ducks, 18% in starlings, 9% in Canadian goose, 5% in dogs and 7% in cats. The faeco-prevalence of C. jejuni was relatively higher during warmer months of the year in ducks, starlings and dogs while starlings showed increased winter prevalence. No such trend could be assessed in Canadian goose, swans, pied stilts and cats as samples could not be collected for the entire study period from these species. Conclusions This study estimated the faeco-prevalence of C. jejuni in different animal species where the prevalence was relatively high during warmer months in general. However, there was relative increase in winter prevalence in starlings. The urban wild bird species and pets may be considered potential risk factors for human campylobacteriosis in New Zealand, particularly in small children.
                Bookmark

                Author and article information

                Contributors
                lingvathsala@gmail.com
                I.Habib@murdoch.edu.au
                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central (London )
                1756-0500
                4 February 2019
                4 February 2019
                2019
                : 12
                : 76
                Affiliations
                [1 ]ISNI 0000 0001 0696 9806, GRID grid.148374.d, Institute of Veterinary, Animal and Biomedical Sciences, , Massey University, ; Palmerston North, New Zealand
                [2 ]ISNI 0000 0004 0436 6763, GRID grid.1025.6, School of Veterinary Medicine, , Murdoch University, ; Perth, Western Australia Australia
                [3 ]ISNI 0000 0001 2260 6941, GRID grid.7155.6, High Institute of Public Health, , Alexandria University, ; Alexandria, Egypt
                Author information
                http://orcid.org/0000-0003-4486-9368
                Article
                4107
                10.1186/s13104-019-4107-5
                6360738
                30717780
                b63bdf20-5c62-4009-99e3-f115601296b8
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 July 2018
                : 31 January 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100005923, Institute of Veterinary, Animal and Biomedical Sciences, Massey University;
                Categories
                Research Note
                Custom metadata
                © The Author(s) 2019

                Medicine
                campylobacter,pets,cats,mlst,genotyping,pora,flaa typing
                Medicine
                campylobacter, pets, cats, mlst, genotyping, pora, flaa typing

                Comments

                Comment on this article