8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracting Phonetic Features From Natural Classes: A Mismatch Negativity Study of Mandarin Chinese Retroflex Consonants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How speech sounds are represented in the brain is not fully understood. The mismatch negativity (MMN) has proven to be a powerful tool in this regard. The MMN event-related potential is elicited by a deviant stimulus embedded within a series of repeating standard stimuli. Listeners construct auditory memory representations of these standards despite acoustic variability. In most designs that test speech sounds, however, this variation is typically intra-category: All standards belong to the same phonetic category. In the current paper, inter-category variation is presented in the standards. These standards vary in manner of articulation but share a common phonetic feature. In the standard retroflex experimental block, Mandarin Chinese speaking participants are presented with a series of “standard” consonants that share the feature [retroflex], interrupted by infrequent non-retroflex deviants. In the non-retroflex standard experimental block, non-retroflex standards are interrupted by infrequent retroflex deviants. The within-block MMN was calculated, as was the identity MMN (iMMN) to account for intrinsic differences in responses to the stimuli. We only observed a within-block MMN to the non-retroflex deviant embedded in the standard retroflex block. This suggests that listeners extract [retroflex] despite significant inter-category variation. In the non-retroflex standard block, because there is little on which to base a coherent auditory memory representation, no within-block MMN was observed. The iMMN to the retroflex was observed in a late time-window at centro-parieto-occipital electrode sites instead of fronto-central electrodes, where the MMN is typically observed, potentially reflecting the increased difficulty posed by the added variation in the standards. In short, participants can construct auditory memory representations despite significant acoustic and inter-category phonological variation so long as a shared phonetic feature binds them together.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

          We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mismatch negativity (MMN) in basic research of central auditory processing: a review.

            In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order cognitive processes such as those involving grammar and semantic meaning. Moreover, MMN data also show the presence of automatic intelligent processes such as stimulus anticipation at the level of auditory cortex. In addition, the MMN enables one to establish the brain processes underlying the initiation of attention switch to, conscious perception of, sound change in an unattended stimulus stream.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cortical organization of speech processing.

              Despite decades of research, the functional neuroanatomy of speech processing has been difficult to characterize. A major impediment to progress may have been the failure to consider task effects when mapping speech-related processing systems. We outline a dual-stream model of speech processing that remedies this situation. In this model, a ventral stream processes speech signals for comprehension, and a dorsal stream maps acoustic speech signals to frontal lobe articulatory networks. The model assumes that the ventral stream is largely bilaterally organized--although there are important computational differences between the left- and right-hemisphere systems--and that the dorsal stream is strongly left-hemisphere dominant.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                24 March 2021
                2021
                : 15
                : 609898
                Affiliations
                [1] 1Department of Linguistics, University of Toronto , Toronto, ON, Canada
                [2] 2Department of Language Studies, University of Toronto Scarborough , Toronto, ON, Canada
                [3] 3Department of Psychology, University of Toronto Scarborough , Toronto, ON, Canada
                Author notes

                Edited by: Valerie L. Shafer, The City University of New York, United States

                Reviewed by: Yan H. Yu, St. John’s University, United States; Hia Datta, Molloy College, United States

                *Correspondence: Philip J. Monahan, philip.monahan@ 123456utoronto.ca

                This article was submitted to Speech and Language, a section of the journal Frontiers in Human Neuroscience

                Article
                10.3389/fnhum.2021.609898
                8029992
                b680d0f7-0e12-4a48-891b-7622eaa313cd
                Copyright © 2021 Fu and Monahan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 September 2020
                : 23 February 2021
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 108, Pages: 15, Words: 0
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Award ID: RGPIN-2017-06053
                Categories
                Neuroscience
                Original Research

                Neurosciences
                mismatch negativity (mmn),retroflex,chinese,eeg – electroencephalogram,speech perception,phonology,phonetics,phonetic features

                Comments

                Comment on this article