28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites

      research-article
      1 , , 1 , 2 ,
      BMC Bioinformatics
      BioMed Central
      The Second Automated Function Prediction Meeting
      30 August – 1 September 2006

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          An accurate description of protein shape derived from protein structure is necessary to establish an understanding of protein-ligand interactions, which in turn will lead to improved methods for protein-ligand docking and binding site analysis. Most current shape descriptors characterize only the local properties of protein structure using an all-atom representation and are slow to compute. We need new shape descriptors that have the ability to capture both local and global structural information, are robust for application to models and low quality structures and are computationally efficient to permit high throughput analysis of protein structures.

          Results

          We introduce a new shape description that requires only the C α atoms to represent the protein structure, thus making it both fast and suitable for use on models and low quality structures. The notion of a geometric potential is introduced to quantitatively describe the shape of the structure. This geometric potential is dependent on both the global shape of the protein structure as well as the surrounding environment of each residue. When applying the geometric potential for binding site prediction, approximately 85% of known binding sites can be accurately identified with above 50% residue coverage and 80% specificity. Moreover, the algorithm is fast enough for proteome-scale applications. Proteins with fewer than 500 amino acids can be scanned in less than two seconds.

          Conclusion

          The reduced representation of the protein structure combined with the geometric potential provides a fast, quantitative description of protein-ligand binding sites with potential for use in large-scale predictions, comparisons and analysis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues

          Cavities on a proteins surface as well as specific amino acid positioning within it create the physicochemical properties needed for a protein to perform its function. CASTp () is an online tool that locates and measures pockets and voids on 3D protein structures. This new version of CASTp includes annotated functional information of specific residues on the protein structure. The annotations are derived from the Protein Data Bank (PDB), Swiss-Prot, as well as Online Mendelian Inheritance in Man (OMIM), the latter contains information on the variant single nucleotide polymorphisms (SNPs) that are known to cause disease. These annotated residues are mapped to surface pockets, interior voids or other regions of the PDB structures. We use a semi-global pair-wise sequence alignment method to obtain sequence mapping between entries in Swiss-Prot, OMIM and entries in PDB. The updated CASTp web server can be used to study surface features, functional regions and specific roles of key residues of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An evolutionary trace method defines binding surfaces common to protein families.

            X-ray or NMR structures of proteins are often derived without their ligands, and even when the structure of a full complex is available, the area of contact that is functionally and energetically significant may be a specialized subset of the geometric interface deduced from the spatial proximity between ligands. Thus, even after a structure is solved, it remains a major theoretical and experimental goal to localize protein functional interfaces and understand the role of their constituent residues. The evolutionary trace method is a systematic, transparent and novel predictive technique that identifies active sites and functional interfaces in proteins with known structure. It is based on the extraction of functionally important residues from sequence conservation patterns in homologous proteins, and on their mapping onto the protein surface to generate clusters identifying functional interfaces. The SH2 and SH3 modular signaling domains and the DNA binding domain of the nuclear hormone receptors provide tests for the accuracy and validity of our method. In each case, the evolutionary trace delineates the functional epitope and identifies residues critical to binding specificity. Based on mutational evolutionary analysis and on the structural homology of protein families, this simple and versatile approach should help focus site-directed mutagenesis studies of structure-function relationships in macromolecules, as well as studies of specificity in molecular recognition. More generally, it provides an evolutionary perspective for judging the functional or structural role of each residue in protein structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.

              Identifying the location of ligand binding sites on a protein is of fundamental importance for a range of applications including molecular docking, de novo drug design and structural identification and comparison of functional sites. Here, we describe a new method of ligand binding site prediction called Q-SiteFinder. It uses the interaction energy between the protein and a simple van der Waals probe to locate energetically favourable binding sites. Energetically favourable probe sites are clustered according to their spatial proximity and clusters are then ranked according to the sum of interaction energies for sites within each cluster. There is at least one successful prediction in the top three predicted sites in 90% of proteins tested when using Q-SiteFinder. This success rate is higher than that of a commonly used pocket detection algorithm (Pocket-Finder) which uses geometric criteria. Additionally, Q-SiteFinder is twice as effective as Pocket-Finder in generating predicted sites that map accurately onto ligand coordinates. It also generates predicted sites with the lowest average volumes of the methods examined in this study. Unlike pocket detection, the volumes of the predicted sites appear to show relatively low dependence on protein volume and are similar in volume to the ligands they contain. Restricting the size of the pocket is important for reducing the search space required for docking and de novo drug design or site comparison. The method can be applied in structural genomics studies where protein binding sites remain uncharacterized since the 86% success rate for unbound proteins appears to be only slightly lower than that of ligand-bound proteins. Both Q-SiteFinder and Pocket-Finder have been made available online at http://www.bioinformatics.leeds.ac.uk/qsitefinder and http://www.bioinformatics.leeds.ac.uk/pocketfinder
                Bookmark

                Author and article information

                Conference
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2007
                22 May 2007
                : 8
                : Suppl 4
                : S9
                Affiliations
                [1 ]San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
                [2 ]Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
                Article
                1471-2105-8-S4-S9
                10.1186/1471-2105-8-S4-S9
                1892088
                17570152
                b788bff5-630e-4616-8244-616782e2a867
                Copyright © 2007 Xie and Bourne; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The Second Automated Function Prediction Meeting
                La Jolla, CA, USA
                30 August – 1 September 2006
                History
                Categories
                Proceedings

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article