27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience.

      Radiology
      Aged, Alzheimer Disease, physiopathology, radionuclide imaging, Analysis of Variance, Brain, blood supply, Cerebrovascular Circulation, physiology, Cognition Disorders, Female, Humans, Magnetic Resonance Imaging, methods, Male, Positron-Emission Tomography, Prospective Studies, Radiopharmaceuticals, diagnostic use, Spin Labels, Technetium Tc 99m Exametazime, Tomography, Emission-Computed, Single-Photon

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To prospectively determine if pulsed arterial spin-labeling perfusion magnetic resonance (MR) imaging depicts regional cerebral hypoperfusion in subjects with Alzheimer disease (AD) and mild cognitive impairment (MCI), compared with perfusion in cognitively normal (CN) subjects, that is consistent with results of fluorodeoxyglucose (FDG) positron emission tomography (PET) and hexamethylpropyleneamine oxime (HMPAO) single photon emission computed tomography (SPECT) studies of similar populations. Institutional review board approval and informed consent were obtained. Twenty subjects with AD (13 men, seven women; mean age, 72.9 years), 18 with MCI (nine men, nine women; mean age, 73.3 years), and 23 CN subjects (10 men, 13 women; mean age, 72.9 years) underwent arterial spin-labeling and volumetric T1-weighted structural MR imaging. Perfusion images were coregistered to structural images, corrected for partial volume effects (PVEs) with information from the structural image to determine tissue content of perfusion voxels, and normalized to a study-specific template. Analyses of perfusion differences between groups, with and without corrections for PVEs, were performed on a voxel-by-voxel basis with a one-tailed fixed-effects analysis of covariance model adjusted for age. In addition, tests were performed with and without accounting for global perfusion. The AD group showed significant regional hypoperfusion, compared with the CN group, in the right inferior parietal cortex extending into the bilateral posterior cingulate gyri (P <.001), bilateral superior and middle frontal gyri (P <.001), and left inferior parietal lobe (P=.007). When PVEs from underlying cortical gray matter atrophy were accounted for, the AD group still showed hypoperfusion in the right inferior parietal lobe extending into the bilateral posterior cingulate gyri (P <.001) and left (P=.003) and right (P=.012) middle frontal gyri. With a more liberal voxel-level threshold of P <.01, the MCI group showed significant regional hypoperfusion relative to the CN group in the inferior right parietal lobe (P=.046), similar to the region of greatest significance in the AD group. Arterial spin-labeling MR imaging showed regional hypoperfusion with AD, in brain regions similar to those seen in FDG PET and HMPAO SPECT studies of similar populations; this hypoperfusion persists after accounting for underlying cortical gray matter atrophy.

          Related collections

          Author and article information

          Comments

          Comment on this article