8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enriched environment attenuates hippocampal theta and gamma rhythms dysfunction in chronic cerebral hypoperfusion via improving imbalanced neural afferent levels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic cerebral hypoperfusion (CCH) is increasingly recognized as a common cognitive impairment-causing mechanism. However, no clinically effective drugs to treat cognitive impairment due to CCH have been identified. An abnormal distribution of neural oscillations was found in the hippocampus of CCH rats. By releasing various neurotransmitters, distinct afferent fibers in the hippocampus influence neuronal oscillations in the hippocampus. Enriched environments (EE) are known to improve cognitive levels by modulating neurotransmitter homeostasis. Using EE as an intervention, we examined the levels of three classical neurotransmitters and the dynamics of neural oscillations in the hippocampus of the CCH rat model. The results showed that EE significantly improved the balance of three classical neurotransmitters (acetylcholine, glutamate, and GABA) in the hippocampus, enhanced the strength of theta and slow-gamma (SG) rhythms, and dramatically improved neural coupling across frequency bands in CCH rats. Furthermore, the expression of the three neurotransmitter vesicular transporters—vesicular acetylcholine transporters (VAChT) and vesicular GABA transporters (VGAT)—was significantly reduced in CCH rats, whereas the expression of vesicular glutamate transporter 1 (VGLUT1) was abnormally elevated. EE partially restored the expression of the three protein levels to maintain the balance of hippocampal afferent neurotransmitters. More importantly, causal mediation analysis showed EE increased the power of theta rhythm by increasing the level of VAChT and VGAT, which then enhanced the phase amplitude coupling of theta-SG and finally led to an improvement in the cognitive level of CCH. These findings shed light on the role of CCH in the disruption of hippocampal afferent neurotransmitter balance and neural oscillations. This study has implications for our knowledge of disease pathways.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Theta oscillations in the hippocampus.

          Theta oscillations represent the "on-line" state of the hippocampus. The extracellular currents underlying theta waves are generated mainly by the entorhinal input, CA3 (Schaffer) collaterals, and voltage-dependent Ca(2+) currents in pyramidal cell dendrites. The rhythm is believed to be critical for temporal coding/decoding of active neuronal ensembles and the modification of synaptic weights. Nevertheless, numerous critical issues regarding both the generation of theta oscillations and their functional significance remain challenges for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal neural oscillations and synchrony in schizophrenia.

            Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brain's rhythm-generating networks of GABA (gamma-aminobutyric acid) interneurons and in cortico-cortical connections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The θ-γ neural code.

              Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                17 May 2023
                2023
                : 17
                : 985246
                Affiliations
                [1] 1Department of Neurology, Zhongnan Hospital of Wuhan University , Wuhan, China
                [2] 2Department of Anesthesiology, Tongren Hospital of Wuhan University , Wuhan, China
                [3] 3Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province , Wuhan, China
                Author notes

                Edited by: Huanxing Su, University of Macau, Macau SAR, China

                Reviewed by: Hisashi Shirakawa, Kyoto University, Japan; Jing Ai, Harbin Medical University, China; Wenshi Wei, Fudan University, China

                *Correspondence: JunJian Zhang, wdsjkx@ 123456163.com

                This article was submitted to Cellular Neuropathology, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2023.985246
                10231328
                8598b56f-fd7f-4f7f-abc0-c67a9dafc1c3
                Copyright © 2023 Zheng, Peng, Cui, Liu, Li, Zhao, Li, Hu, Zhang, Xu and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 July 2022
                : 27 February 2023
                Page count
                Figures: 9, Tables: 3, Equations: 1, References: 58, Pages: 15, Words: 9765
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                This study was supported by the National Natural Science Foundation of China (grant number: 82071210 to JuZ).
                Categories
                Neuroscience
                Original Research

                Neurosciences
                chronic cerebral hypoperfusion,enriched environment,cognitive dysfunction,neural oscillations,phase amplitude coupling,neurotransmitter balance

                Comments

                Comment on this article