50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of 13C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how 13C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. 13C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from 13C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Activity-dependent regulation of energy metabolism by astrocytes: an update.

          Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential protective roles of reactive astrocytes in traumatic brain injury.

            Astrocytes respond to traumatic brain injury (TBI) by altered gene expression, hypertrophy and proliferation that occur in a gradated fashion in relation to the severity of the injury. Both beneficial and detrimental effects have been attributed to reactive astrocytes, but their roles after brain injury are not well understood. To investigate these roles, we determined the effects on cortical tissue of ablating reactive astrocytes after contusion injury generated by controlled cortical impact (CCI) of different severities in transgenic mice that express a glial fibrillary acidic protein-herpes simplex virus-thymidine kinase transgene. Treatment of these mice with the antiviral agent, ganciclovir, conditionally ablates proliferating reactive astrocytes. Moderate or severe CCI were generated with a precisely regulated pneumatic piston, and forebrain tissue was evaluated using immunohistochemistry and quantitative morphometry. Moderate CCI in control mice triggered extensive and persisting reactive astrogliosis, with most neurons being preserved, little inflammation and an 18% loss of cortical tissue beneath the impact site. Ablation of reactive astrocytes after moderate CCI in transgenic mice caused substantial neuronal degeneration and inflammation, with a significantly greater 60% loss of cortical tissue. Severe CCI in control mice caused pronounced neuronal degeneration and loss of about 88% of cortical tissue that was not significantly altered by ablating reactive astrocytes in transgenic mice. Thus, ablation of dividing reactive astrocytes exacerbated cortical degeneration after moderate CCI, but did not alter cortical degeneration after severe CCI. These findings indicate that the reactive astrocytes play essential roles in preserving neural tissue and restricting inflammation after moderate focal brain injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

              Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.
                Bookmark

                Author and article information

                Journal
                Front Neuroenergetics
                Front Neuroenergetics
                Front. Neuroenergetics
                Frontiers in Neuroenergetics
                Frontiers Media S.A.
                1662-6427
                04 October 2013
                2013
                : 5
                : 8
                Affiliations
                [1] 1Department of Radiology, Loma Linda University School of Medicine Loma Linda, CA, USA
                [2] 2Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles Los Angeles, CA, USA
                Author notes

                Edited by: Sebastian Cerdan, Instituto de Investigaciones Biomedicas Alberto Sols, Spain

                Reviewed by: Sebastian Cerdan, Instituto de Investigaciones Biomedicas Alberto Sols, Spain; Susanna Scafidi, Johns Hopkins University School of Medicine, USA

                *Correspondence: Brenda L. Bartnik-Olson, Department of Radiology, Loma Linda University Medical Center, 11234 Anderson Street, Room B623, Loma Linda, CA 92354, USA e-mail: bbartnik@ 123456llu.edu

                This article was submitted to the journal Frontiers in Neuroenergetics.

                †Present address: Katsunori Shijo, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan

                Article
                10.3389/fnene.2013.00008
                3790078
                24109452
                b8f83a8d-cd88-4839-8714-21334ced3ceb
                Copyright © 2013 Bartnik-Olson, Harris, Shijo and Sutton.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 July 2013
                : 12 September 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 125, Pages: 9, Words: 8408
                Categories
                Neuroscience
                Mini Review Article

                Neurosciences
                acetate,glucose,glutamate-glutamine cycle,magnetic resonance spectroscopy,neuroglial compartmentation,oxidative metabolism,pentose phosphate pathway

                Comments

                Comment on this article