9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Right heart in pulmonary hypertension: from adaptation to failure

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Right ventricular (RV) failure (RVF) has garnered significant attention in recent years because of its negative impact on clinical outcomes in patients with pulmonary hypertension (PH). PH triggers a series of events, including activation of several signaling pathways that regulate cell growth, metabolism, extracellular matrix remodeling, and energy production. These processes render the RV adaptive to PH. However, RVF develops when PH persists, accompanied by RV ischemia, alterations in substrate and mitochondrial energy metabolism, increased free oxygen radicals, increased cell loss, downregulation of adrenergic receptors, increased inflammation and fibrosis, and pathologic microRNAs. Diastolic dysfunction is also an integral part of RVF. Emerging non-invasive technologies such as molecular or metallic imaging, cardiac MRI, and ultrafast Doppler coronary flow mapping will be valuable tools to monitor RVF, especially the transition to RVF. Most PH therapies cannot treat RVF once it has occurred. A variety of therapies are available to treat acute and chronic RVF, but they are mainly supportive, and no effective therapy directly targets the failing RV. Therapies that target cell growth, cellular metabolism, oxidative stress, and myocyte regeneration are being tested preclinically. Future research should include establishing novel RVF models based on existing models, increasing use of human samples, creating human stem cell-based in vitro models, and characterizing alterations in cardiac excitation–contraction coupling during transition from adaptive RV to RVF. More successful strategies to manage RVF will likely be developed as we learn more about the transition from adaptive remodeling to maladaptive RVF in the future.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.

          Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic Heart Failure and Inflammation: What Do We Really Know?

            As a greater proportion of patients survive their initial cardiac insult, medical systems worldwide are being faced with an ever-growing need to understand the mechanisms behind the pathogenesis of chronic heart failure (HF). There is a wealth of information about the role of inflammatory cells and pathways during acute injury and the reparative processes that are subsequently activated. We discuss the different causes that lead to chronic HF development and how the sum of initial inflammatory and reparative responses only sets the trajectory for disease progression. Unfortunately, comparatively little is known about the contribution of the immune system once the trajectory has been set, and chronic HF has been established-which clinically represents the majority of patients. It is known that chronic HF is associated with circulating inflammatory cytokines that can predict clinical outcomes, yet the causative role inflammation plays in disease progression is not well defined, and the majority of clinical trials that target aspects of inflammation in patients with chronic HF have largely been negative. This review will present what is currently known about inflammation in chronic HF in both humans and animal models as a means to highlight the gap in our knowledge base that requires further examination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy.

              The purpose of this study was to examine the relationship between changes in pulmonary vascular resistance (PVR) and right ventricular ejection fraction (RVEF) and survival in patients with pulmonary arterial hypertension (PAH) under PAH-targeted therapies. Despite the fact that medical therapies reduce PVR, the prognosis of patients with PAH is still poor. The primary cause of death is right ventricular (RV) failure. One possible explanation for this apparent paradox is the fact that a reduction in PVR is not automatically followed by an improvement in RV function. A cohort of 110 patients with incident PAH underwent baseline right heart catheterization, cardiac magnetic resonance imaging, and 6-min walk testing. These measurements were repeated in 76 patients after 12 months of therapy. Two patients underwent lung transplantation, 13 patients died during the first year, and 17 patients died in the subsequent follow-up of 47 months. Baseline RVEF (hazard ratio [HR]: 0.938; p = 0.001) and PVR (HR: 1.001; p = 0.031) were predictors of mortality. During the first 12 months, changes in PVR were moderately correlated with changes in RVEF (R = 0.330; p = 0.005). Changes in RVEF (HR: 0.929; p = 0.014) were associated with survival, but changes in PVR (HR: 1.000; p = 0.820) were not. In 68% of patients, PVR decreased after medical therapy. Twenty-five percent of those patients with decreased PVR showed a deterioration of RV function and had a poor prognosis. After PAH-targeted therapy, RV function can deteriorate despite a reduction in PVR. Loss of RV function is associated with a poor outcome, irrespective of any changes in PVR. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Pulm Circ
                Pulm Circ
                PUL
                sppul
                Pulmonary Circulation
                SAGE Publications (Sage UK: London, England )
                2045-8932
                2045-8940
                02 August 2019
                Jul-Sep 2019
                : 9
                : 3
                : 2045894019845611
                Affiliations
                [1 ]Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
                [2 ]Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
                Author notes
                [*]Wei Dong Gao, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Zayed 6208, 1800 Orleans Street, Baltimore, MD 21287, USA. Email: wgao3@ 123456jhmi.edu
                Author information
                https://orcid.org/0000-0002-2363-3762
                Article
                10.1177_2045894019845611
                10.1177/2045894019845611
                6681271
                30942134
                b9e8b409-a096-437c-b088-48e61474f959
                © The Author(s) 2019

                Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 25 October 2018
                : 27 March 2019
                Categories
                Review Article
                Custom metadata
                July-September 2019

                Respiratory medicine
                pulmonary hypertension,right ventricular failure,cardiac hypertrophy
                Respiratory medicine
                pulmonary hypertension, right ventricular failure, cardiac hypertrophy

                Comments

                Comment on this article