Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stratification of hypertension and SARS-CoV-2 infection by quantitative NMR spectroscopy of human blood serum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diagnostic approaches like the nuclear magnetic resonance spectroscopy (NMR) based quantification of metabolites, lipoproteins, and inflammation markers has helped to identify typical alterations in the blood serum of COVID-19 patients. However, confounders such as sex, and comorbidities, which strongly influence the metabolome, were often not considered. Therefore, the aim of this NMR study was to consider sex, as well as arterial hypertension (AHT), when investigating COVID-19-positive serum samples in a large age-and sex matched cohort.

          Methods

          NMR serum data from 329 COVID-19 patients were compared with 305 healthy controls. 134 COVID-19 patients were affected by AHT. These were analyzed together with NMR data from 58 hypertensives without COVID-19. In addition to metabolite, lipoprotein, and glycoprotein data from NMR, common laboratory parameters were considered. Sex was considered in detail for all comparisons.

          Results

          Here, we show that several differences emerge from previous NMR COVID-19 studies when AHT is considered. Especially, the previously described triglyceride-rich lipoprotein profile is no longer observed in COVID-19 patients, nor an increase in ketone bodies. Further alterations are a decrease in glutamine, leucine, isoleucine, and lysine, citric acid, HDL-4 particles, and total cholesterol. Additionally, hypertensive COVID-19 patients show higher inflammatory NMR parameters than normotensive patients.

          Conclusions

          We present a more precise picture of COVID-19 blood serum parameters. Accordingly, considering sex and comorbidities should be included in future metabolomics studies for improved and refined patient stratification. Due to metabolic similarities with other viral infections, these results can be applied to other respiratory diseases in the future.

          Plain language summary

          The functionality of our human body is driven by a large number of small molecules, called metabolites. These metabolites can be associated with health but also disease conditions. In this study, we used a technology called nuclear magnetic resonance spectroscopy (NMR) to determine metabolite and protein concentrations in the blood of acutely-infected COVID-19 patients and compared these results with disease severity and clinical laboratory data. We particularly focus on patients with the very common cardiovascular condition, arterial hypertension (AHT), and important factors such as sex, age and medication. Our findings provide a more detailed insight into COVID-19 and which individuals are at higher risk for more severe disease.

          Abstract

          Kazenwadel et al. evaluate blood serum parameters during acute SARS-CoV-2 infection using quantitative NMR spectroscopy, stratifying patients based on pre-existing arterial hypertension. Hypertensive COVID-19 patients have a distinct serum profile, including altered metabolites and inflammatory markers, compared with normotensive patients.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Post-acute COVID-19 syndrome

            Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic, which has resulted in global healthcare crises and strained health resources. As the population of patients recovering from COVID-19 grows, it is paramount to establish an understanding of the healthcare issues surrounding them. COVID-19 is now recognized as a multi-organ disease with a broad spectrum of manifestations. Similarly to post-acute viral syndromes described in survivors of other virulent coronavirus epidemics, there are increasing reports of persistent and prolonged effects after acute COVID-19. Patient advocacy groups, many members of which identify themselves as long haulers, have helped contribute to the recognition of post-acute COVID-19, a syndrome characterized by persistent symptoms and/or delayed or long-term complications beyond 4 weeks from the onset of symptoms. Here, we provide a comprehensive review of the current literature on post-acute COVID-19, its pathophysiology and its organ-specific sequelae. Finally, we discuss relevant considerations for the multidisciplinary care of COVID-19 survivors and propose a framework for the identification of those at high risk for post-acute COVID-19 and their coordinated management through dedicated COVID-19 clinics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Succinate is an inflammatory signal that induces IL-1β through HIF-1α.

              Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the 'GABA (γ-aminobutyric acid) shunt' pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.
                Bookmark

                Author and article information

                Contributors
                Christoph.Trautwein@med.uni-tuebingen.de
                Journal
                Commun Med (Lond)
                Commun Med (Lond)
                Communications Medicine
                Nature Publishing Group UK (London )
                2730-664X
                16 October 2023
                16 October 2023
                2023
                : 3
                : 145
                Affiliations
                [1 ]Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, ( https://ror.org/03a1kwz48) Tübingen, Germany
                [2 ]GRID grid.423218.e, Bruker BioSpin GmbH, , Applied Industrial and Clinical Division, ; Ettlingen, Germany
                [3 ]GRID grid.411544.1, ISNI 0000 0001 0196 8249, Department of Internal Medicine III, Cardiology and Angiology, , University Hospital Tübingen, ; Tübingen, Germany
                [4 ]Department of Internal Medicine IV, University Hospital Heidelberg, ( https://ror.org/013czdx64) Heidelberg, Germany
                Author information
                http://orcid.org/0000-0003-1124-9592
                http://orcid.org/0000-0003-1386-3350
                http://orcid.org/0000-0003-4672-6395
                Article
                365
                10.1038/s43856-023-00365-y
                11081957
                37845506
                ba8b4689-4878-4f36-909f-11d1b48b57c4
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 February 2023
                : 12 September 2023
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                diagnostic markers,viral infection,hypertension
                diagnostic markers, viral infection, hypertension

                Comments

                Comment on this article