4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK
      Microbiology, Diseases

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melimine and Mel4 are chimeric cationic peptides with broad-spectrum antimicrobial activity. They have been shown to be highly biocompatible in animal models and human clinical trials. The current study examined the mechanism of action of these two antimicrobial peptides against P. aeruginosa. The effect of the peptides of endotoxin neutralization, and their interactions with cytoplasmic membranes using DiSC(3)-5 and Sytox green, Syto-9 and PI dyes were analysed. Release of ATP and DNA/RNA were determined using ATP luminescence and increase in OD 260 nm. The bacteriolytic ability of the peptides was determined by measuring decreases in OD 620 nm. Both the peptides neutralized LPS suggesting their interaction with lipid A. Cytoplasmic membrane was disrupted within 30 seconds, which correlated with reductions in cellular viability. At 2 minutes melimine or Mel4, released 75% and 36% cellular ATP respectively (P < 0.001). Membrane permeabilization started 5 minutes with simultaneous release of DNA/RNA. Flow cytometry demonstrated 52% and 18% bacteria were stained with PI after 30 minutes. Overall, melimine showed higher capacity for membrane disruption compared to Mel4 (P < 0.001). The findings of this study have been summarized as a timeline of bactericidal activity, suggesting that the peptides permeabilized P. aeruginosa within 5 minutes, started lysis within 2 hours of exposure.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antimicrobial Peptides

          The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pseudomonas aeruginosa: all roads lead to resistance.

            Pseudomonas aeruginosa is often resistant to multiple antibiotics and consequently has joined the ranks of 'superbugs' due to its enormous capacity to engender resistance. It demonstrates decreased susceptibility to most antibiotics due to low outer membrane permeability coupled to adaptive mechanisms and can readily achieve clinical resistance. Newer research, using mutant library screens, microarray technologies and mutation frequency analysis, has identified very large collections of genes (the resistome) that when mutated lead to resistance as well as new forms of adaptive resistance that can be triggered by antibiotics themselves, in in vivo growth conditions or complex adaptations such as biofilm growth or swarming motility. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The co-evolution of host cationic antimicrobial peptides and microbial resistance.

              Endogenous cationic antimicrobial peptides (CAMPs) are among the most ancient and efficient components of host defence. It is somewhat of an enigma that bacteria have not developed highly effective CAMP-resistance mechanisms, such as those that inhibit many therapeutic antibiotics. Here, we propose that CAMPs and CAMP-resistance mechanisms have co-evolved, leading to a transient host-pathogen balance that has shaped the existing CAMP repertoire. Elucidating the underlying principles of this process could help in the development of more sustainable antibiotics.
                Bookmark

                Author and article information

                Contributors
                yasirjri85@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 May 2019
                8 May 2019
                2019
                : 9
                : 7063
                Affiliations
                ISNI 0000 0004 4902 0432, GRID grid.1005.4, School of Optometry and Vision Science, , University of New South Wales, ; Sydney, Australia
                Article
                42440
                10.1038/s41598-019-42440-2
                6506473
                31068610
                bb0805ba-7034-49c5-9087-08a172b1ce60
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 November 2018
                : 18 March 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000923, Department of Education and Training | Australian Research Council (ARC);
                Award ID: DP160101664
                Award ID: DP160101664
                Award ID: DP160101664
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                microbiology,diseases
                Uncategorized
                microbiology, diseases

                Comments

                Comment on this article