2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antifungal Volatile Organic Compounds from Streptomyces setonii WY228 Control Black Spot Disease of Sweet Potato

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Black spot disease caused by Ceratocystis fimbriata has caused huge economic losses to worldwide sweet potato production. At present, the control of C. fimbriata mainly depends on toxic fungicides, and there is a lack of effective alternative strategies.

          ABSTRACT

          Volatile organic compounds (VOCs) produced by microorganisms are considered promising environmental-safety fumigants for controlling postharvest diseases. Ceratocystis fimbriata , the pathogen of black spot disease, seriously affects the quality and yield of sweet potato in the field and postharvest. This study tested the effects of VOCs produced by Streptomyces setonii WY228 on the control of C. fimbriata in vitro and in vivo . The VOCs exhibited strong antifungal activity and significantly inhibited the growth of C. fimbriata . During the 20-day storage, VOC fumigation significantly controlled the occurrence of the pathogen, increased the content of antioxidants and defense-related enzymes and flavonoids, and boosted the starch content so as to maintain the quality of the sweet potatoes. Headspace analysis showed that the volatiles 2-ethyl-5-methylpyrazine and dimethyl disulfide significantly inhibited the mycelial growth and spore germination of C. fimbriata in a dose-dependent manner. Fumigation with 100 μL/L 2-ethyl-5-methylpyrazine completely controlled the pathogen in vivo after 10 days of storage. Transcriptome analysis showed that volatiles mainly downregulated the ribosomal synthesis genes and activated the proteasome system of the pathogen in response to VOC stress, while the genes related to spore development, cell membrane synthesis, mitochondrial function, and hydrolase and toxin synthesis were also downregulated, indicating that WY228-produced VOCs have diverse modes of action for pathogen control. Our study demonstrates that fumigation of sweet potato tuberous roots with S. setonii WY228 or use of formulations based on the VOCs is a promising new strategy to control sweet potato and other food and fruit pathogens during storage and shipment.

          IMPORTANCE Black spot disease caused by Ceratocystis fimbriata has caused huge economic losses to worldwide sweet potato production. At present, the control of C. fimbriata mainly depends on toxic fungicides, and there is a lack of effective alternative strategies. The research on biological control of sweet potato black spot disease is also very limited. An efficient biocontrol technique against pathogens using microbial volatile organic compounds could be an alternative method to control this disease. Our study revealed the significant biological control effect of volatile organic compounds of Streptomyces setonii WY228 on black spot disease of postharvest sweet potato and the complex antifungal mechanism against C. fimbriata . Our data demonstrated that Streptomyces setonii WY228 and its volatile 2-ethyl-5-methylpyrazine could be a candidate strain and compound for the creation of fumigants and showed the important potential of biotechnology applications in the field of food and agriculture.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Differential expression analysis for sequence count data

          High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions

            TopHat is a popular spliced aligner for RNA-sequence (RNA-seq) experiments. In this paper, we describe TopHat2, which incorporates many significant enhancements to TopHat. TopHat2 can align reads of various lengths produced by the latest sequencing technologies, while allowing for variable-length indels with respect to the reference genome. In addition to de novo spliced alignment, TopHat2 can align reads across fusion breaks, which can occur after genomic translocations. TopHat2 combines the ability to identify novel splice sites with direct mapping to known transcripts, producing sensitive and accurate alignments, even for highly repetitive genomes or in the presence of pseudogenes. TopHat2 is available at http://ccb.jhu.edu/software/tophat.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.

                Bookmark

                Author and article information

                Journal
                Applied and Environmental Microbiology
                Appl Environ Microbiol
                American Society for Microbiology
                0099-2240
                1098-5336
                March 22 2022
                March 22 2022
                : 88
                : 6
                Affiliations
                [1 ]The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
                [2 ]Xuzhou Kuaibang Biotechnology Development Co., Ltd., Xuzhou, Jiangsu, People’s Republic of China
                Article
                10.1128/aem.02317-21
                35108080
                bb358731-f74f-49b7-bed7-99bd500f2ce4
                © 2022

                https://doi.org/10.1128/ASMCopyrightv2

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article