4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical Starting Matter for HNF4α Ligand Discovery and Chemogenomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatocyte nuclear factor 4α (HNF4α) is a ligand-sensing transcription factor and presents as a potential drug target in metabolic diseases and cancer. In humans, mutations in the HNF4α gene cause maturity-onset diabetes of the young (MODY), and the elevated activity of this protein has been associated with gastrointestinal cancers. Despite the high therapeutic potential, available ligands and structure–activity relationship knowledge for this nuclear receptor are scarce. Here, we disclose a chemically diverse collection of orthogonally validated fragment-like activators as well as inverse agonists, which modulate HNF4α activity in a low micromolar range. These compounds demonstrate the druggability of HNF4α and thus provide a starting point for medicinal chemistry as well as an early tool for chemogenomics.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis.

          The numerous functions of the liver are controlled primarily at the transcriptional level by the concerted actions of a limited number of hepatocyte-enriched transcription factors (hepatocyte nuclear factor 1alpha [HNF1alpha], -1beta, -3alpha, -3beta, -3gamma, -4alpha, and -6 and members of the c/ebp family). Of these, only HNF4alpha (nuclear receptor 2A1) and HNF1alpha appear to be correlated with the differentiated phenotype of cultured hepatoma cells. HNF1alpha-null mice are viable, indicating that this factor is not an absolute requirement for the formation of an active hepatic parenchyma. In contrast, HNF4alpha-null mice die during embryogenesis. Moreover, recent in vitro experiments using tetraploid aggregation suggest that HNF4alpha is indispensable for hepatocyte differentiation. However, the function of HNF4alpha in the maintenance of hepatocyte differentiation and function is less well understood. To address the function of HNF4alpha in the mature hepatocyte, a conditional gene knockout was produced using the Cre-loxP system. Mice lacking hepatic HNF4alpha expression accumulated lipid in the liver and exhibited greatly reduced serum cholesterol and triglyceride levels and increased serum bile acid concentrations. The observed phenotypes may be explained by (i) a selective disruption of very-low-density lipoprotein secretion due to decreased expression of genes encoding apolipoprotein B and microsomal triglyceride transfer protein, (ii) an increase in hepatic cholesterol uptake due to increased expression of the major high-density lipoprotein receptor, scavenger receptor BI, and (iii) a decrease in bile acid uptake to the liver due to down-regulation of the major basolateral bile acid transporters sodium taurocholate cotransporter protein and organic anion transporter protein 1. These data indicate that HNF4alpha is central to the maintenance of hepatocyte differentiation and is a major in vivo regulator of genes involved in the control of lipid homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of ligand efficiency metrics in drug discovery.

            The judicious application of ligand or binding efficiency metrics, which quantify the molecular properties required to obtain binding affinity for a drug target, is gaining traction in the selection and optimization of fragments, hits and leads. Retrospective analysis of recently marketed oral drugs shows that they frequently have highly optimized ligand efficiency values for their targets. Optimizing ligand efficiency metrics based on both molecular mass and lipophilicity, when set in the context of the specific target, has the potential to ameliorate the inflation of these properties that has been observed in current medicinal chemistry practice, and to increase the quality of drug candidates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GAL4-VP16 is an unusually potent transcriptional activator.

              Recent work has defined a class of transcriptional activators, members of which activate transcription in yeast, plant, insect and mammalian cells. These proteins contain two parts: one directs DNA binding and the other, called the activating region, presumably interacts with some component of the transcriptional machinery. Activating regions are typically acidic and require some poorly-understood aspect of structure, probably at least in part an alpha-helix. Here we describe a new member of this class, formed by fusing a DNA-binding fragment of the yeast activator GAL4 to a highly acidic portion of the herpes simplex virus protein VP16 (ref. 11; also called Vmw65). VP16 activates transcription of immediate early viral genes by using its amino-terminal sequences to attach to one or more host-encoded proteins that recognise DNA sequences in their promoters. We show that the hybrid protein (GAL4-VP16) activates transcription unusually efficiently in mammalian cells when bound close to, or at large distances from the gene. We suggest that the activating region of VP16 may be near-maximally potent and that it is not coincidental that such a strong activator is encoded by a virus.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                24 October 2020
                November 2020
                : 21
                : 21
                : 7895
                Affiliations
                [1 ]Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; a01568041@ 123456unet.univie.ac.at (I.M.); willems@ 123456pharmchem.uni-frankfurt.de (S.W.); ni@ 123456em.uni-frankfurt.de (X.N.); chaikuad@ 123456pharmchem.uni-frankfurt.de (A.C.)
                [2 ]Structural Genomics Consortium, BMLS, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
                [3 ]Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany; Jan.Heering@ 123456ime.fraunhofer.de
                Author notes
                Author information
                https://orcid.org/0000-0003-1120-2209
                Article
                ijms-21-07895
                10.3390/ijms21217895
                7660650
                33114319
                bbe2a0c6-6342-4dee-965a-731829bf7f56
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 September 2020
                : 21 October 2020
                Categories
                Communication

                Molecular biology
                orphan nuclear receptor,hepatocyte nuclear factor 4α,mody,type 2 diabetes,fragment-based design,drug discovery

                Comments

                Comment on this article