0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiota composition and its impact on DNA methylation in colorectal cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage . Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UniProt: the universal protein knowledgebase in 2021

          (2020)
          Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            COSMIC: the Catalogue Of Somatic Mutations In Cancer

            Abstract COSMIC, the Catalogue Of Somatic Mutations In Cancer (https://cancer.sanger.ac.uk) is the most detailed and comprehensive resource for exploring the effect of somatic mutations in human cancer. The latest release, COSMIC v86 (August 2018), includes almost 6 million coding mutations across 1.4 million tumour samples, curated from over 26 000 publications. In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants and drug-resistance mutations. COSMIC is primarily hand-curated, ensuring quality, accuracy and descriptive data capture. Building on our manual curation processes, we are introducing new initiatives that allow us to prioritize key genes and diseases, and to react more quickly and comprehensively to new findings in the literature. Alongside improvements to the public website and data-download systems, new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability. In parallel with COSMIC’s deep and broad variant coverage, the Cancer Gene Census (CGC) describes a curated catalogue of genes driving every form of human cancer. Currently describing 719 genes, the CGC has recently introduced functional descriptions of how each gene drives disease, summarized into the 10 cancer Hallmarks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enterotypes of the human gut microbiome.

              Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/1739251/overview
                URI : https://loop.frontiersin.org/people/2392270/overview
                URI : https://loop.frontiersin.org/people/2373349/overview
                URI : https://loop.frontiersin.org/people/2392265/overview
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                08 August 2023
                2023
                : 14
                : 1037406
                Affiliations
                [1] 1 Departamento de Ciencias de la Salud , Centro Universitario de los Altos , Universidad de Guadalajara , Guadalajara, Jalisco, Mexico
                [2] 2 Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera” , Departamento de Biología Molecular y Genómica , Centro Universitario de Ciencias de la Salud (CUCS) , Universidad de Guadalajara , Guadalajara, Jalisco, Mexico
                [3] 3 Departamento de Biología Celular y Molecular , Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara , Guadalajara, Jalisco, Mexico
                Author notes

                Edited by: Raghavendra Upadhya, Texas A and M University, United States

                Reviewed by: Gokhan Akkoyunlu, Akdeniz University, Türkiye

                Khashayarsha Khazaie, Mayo Clinic Arizona, United States

                *Correspondence: Melva Gutierrez-Angulo, melva.gutierrez@ 123456academicos.udg.mx
                Article
                1037406
                10.3389/fgene.2023.1037406
                10442805
                bc00c12b-d844-4343-96d0-de034c3f61d5
                Copyright © 2023 Gutierrez-Angulo, Ayala-Madrigal, Moreno-Ortiz, Peregrina-Sandoval and Garcia-Ayala.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 September 2022
                : 20 July 2023
                Categories
                Genetics
                Review
                Custom metadata
                Epigenomics and Epigenetics

                Genetics
                microbiota,dna methylation,colorectal cancer,microbiome,dna methyltransferase,tumor suppressor gene

                Comments

                Comment on this article