16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Composition of sand fly fauna (Diptera: Psychodidae) and detection of Leishmania DNA (Kinetoplastida: Trypanosomatidae) in different ecotopes from a rural settlement in the central Amazon, Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Phlebotomine sand flies (Diptera: Psychodidae) are vectors of Leishmania species, the etiological agents of leishmaniasis, which is one of the most important emerging infectious diseases in the Americas. In the state of Amazonas in Brazil, anthropogenic activities encourage the presence of these insects around rural homes. The present study aimed to describe the composition and distribution of sand fly species diversity among the ecotopes (intradomicile, peridomicile and forest) in an area of American cutaneous leishmaniasis transmission and detect natural infection with Leishmania DNA to evaluate which vectors are inside houses and whether the presence of possible vectors represents a hazard of transmission.

          Results

          Phlebotomine sand flies were collected using light traps. A total of 2469 specimens representing 54 species, predominantly females (71.2%), were collected from four sites. Polymerase chain reaction analysis was performed on 670 samples to detect Leishmania DNA. Most of the samples (79.5%) were collected in the forest, with areas closer to rural dwellings yielding a greater abundance of suspected or proven vectors and a larger number of species containing Leishmania DNA. Nyssomyia umbratilis and Bichromomyia flaviscutellata were found near rural homes, and Ny. umbratilis was also found inside homes. Leishmania DNA was detected in different species of sand flies in all ecotopes, including species with no previous record of natural infection.

          Conclusions

          There is no evidence that vectors of American cutaneous leishmaniasis are becoming established inside homes, but there are sand flies, including Ny. umbratilis and other possible vectors, in environments characterized by a human presence. These species continue to be predominant in the forest but are prevalent in areas closer to ecotopes with a greater human presence. The existence of proven or suspected vectors in this ecotope is due to the structural organization of rural settlements and may represent a hazard of transmission. Although the detection of Leishmania DNA in species that were not previously considered vectors does not mean that they are transmitting the parasite, it does show that the parasite is circulating in ecotopes where these species are found.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies

          Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern.

            Phlebotomine sandflies transmit pathogens that affect humans and animals worldwide. We review the roles of phlebotomines in the spreading of leishmaniases, sandfly fever, summer meningitis, vesicular stomatitis, Chandipura virus encephalitis and Carrión's disease. Among over 800 species of sandfly recorded, 98 are proven or suspected vectors of human leishmaniases; these include 42 Phlebotomus species in the Old World and 56 Lutzomyia species in the New World (all: Diptera: Psychodidae). Based on incrimination criteria, we provide an updated list of proven or suspected vector species by endemic country where data are available. Increases in sandfly diffusion and density resulting from increases in breeding sites and blood sources, and the interruption of vector control activities contribute to the spreading of leishmaniasis in the settings of human migration, deforestation, urbanization and conflict. In addition, climatic changes can be expected to affect the density and dispersion of sandflies. Phlebovirus infections and diseases are present in large areas of the Old World, especially in the Mediterranean subregion, in which virus diversity has proven to be higher than initially suspected. Vesiculovirus diseases are important to livestock and humans in the southeastern U.S.A. and Latin America, and represent emerging human threats in parts of India. Carrión's disease, formerly restricted to regions of elevated altitude in Peru, Ecuador and Colombia, has shown recent expansion to non-endemic areas of the Amazon basin. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biology of phlebotomine sand flies as vectors of disease agents.

              Paul Ready (2013)
              Phlebotomines are the sole or principal vectors of Leishmania, Bartonella bacilliformis, and some arboviruses. The coevolution of sand flies with Leishmania species of mammals and lizards is considered in relation to the landscape epidemiology of leishmaniasis, a neglected tropical disease. Evolutionary hypotheses are unresolved, so a practical phlebotomine classification is proposed to aid biomedical information retrieval. The vectors of Leishmania are tabulated and new criteria for their incrimination are given. Research on fly-parasite-host interactions, fly saliva, and behavioral ecology is reviewed in relation to parasite manipulation of blood feeding, vaccine targets, and pheromones for lures. Much basic research is based on few transmission cycles, so generalizations should be made with caution. Integrated research and control programs have begun, but improved control of leishmaniasis and nuisance-biting requires greater emphasis on population genetics and transmission modeling. Most leishmaniasis transmission is zoonotic, affecting the poor and tourists in rural and natural areas, and therefore control should be compatible with environmental conservation.
                Bookmark

                Author and article information

                Contributors
                ericacchagas@gmail.com
                arineiassilva@gmail.com
                nelson@fmt.am.gov.br
                lucas.ferreiralsf@gmail.com
                vandersons@gmail.com
                wagner.terrazas@gmail.com
                jguerra291@gmail.com
                souzaraf@gmail.com
                hsilveira@ihmt.unl.pt
                mgvale@uea.edu.br
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                13 March 2018
                13 March 2018
                2018
                : 11
                : 180
                Affiliations
                [1 ]ISNI 0000 0000 8024 0602, GRID grid.412290.c, Universidade do Estado do Amazonas (Programa de Pós-graduação em Medicina Tropical/Programa de Pos-graduação em Clima e Ambiente), ; Manaus, Amazonas Brasil
                [2 ]ISNI 0000 0004 0486 0972, GRID grid.418153.a, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, ; Manaus, Amazonas Brasil
                [3 ]Fundação de Vigilância em Saúde do Estado do Amazonas, Manaus, Amazonas Brasil
                [4 ]ISNI 0000000121511713, GRID grid.10772.33, Instituto de Higiene e Medicina Tropical de Lisboa, Universidade Nova de Lisboa, ; Lisboa, Portugal
                Article
                2743
                10.1186/s13071-018-2743-6
                5848579
                29534747
                bc46bcc6-12f9-4acc-8616-c03ff07b7025
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 October 2017
                : 23 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004916, Fundação de Amparo à Pesquisa do Estado do Amazonas;
                Award ID: Edital Resolução N. 002/2008 - PRÓ-ESTADO
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Parasitology
                vectors of leishmania,leishmania dna,sand fly diversity and richness,amazon region,brazil

                Comments

                Comment on this article