Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HBO1/KAT7/MYST2 HAT complex regulates human adenovirus replicative cycle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human adenoviruses (HAdV) belong to a small DNA tumor virus family that continues as valuable models in understanding the viral strategies of usurping cell growth regulation. A number of HAdV type 2/5 early viral gene products interact with a variety of cellular proteins to build a conducive environment that promotes viral replication. Here we show that HBO1 ( Histone Acetyltransferase Binding to ORC 1), a member of the MYST histone acetyltransferase (HAT) complex (also known as KAT7 and MYST2) that acetylates most of the histone H3 lysine 14, is essential for HAdV5 growth. HBO1/MYST2/KAT7 HAT complexes are critical for a variety of cellular processes including control of cell proliferation. In HBO1 downregulated human cells, HAdV5 infection results in reduced expression of E1A and other viral early genes, virus growth is also reduced significantly. Importantly, HBO1 downregulation reduced H3 lysine 14 acetylation at viral promoters during productive infection, likely driving reduced viral gene expression. HBO1 was also associated with viral promoters during infection and co-localized with viral replication centers in the nuclei of infected cells. In transiently transfected cells, overexpression of E1A along with HBO1 stimulated histone acetyltransferase activity of HBO1. E1A also co-immunoprecipitated with HBO1 in transiently transfected cells. In summary, our results demonstrate that HAdV recruits the HBO1 HAT complex to aid in viral replication.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          CBP/p300 in cell growth, transformation, and development.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells

            Background Transcription regulation in pluripotent embryonic stem (ES) cells is a complex process that involves multitude of regulatory layers, one of which is post-translational modification of histones. Acetylation of specific lysine residues of histones plays a key role in regulating gene expression. Results Here we have investigated the genome-wide occurrence of two histone marks, acetylation of histone H3K9 and K14 (H3K9ac and H3K14ac), in mouse embryonic stem (mES) cells. Genome-wide H3K9ac and H3K14ac show very high correlation between each other as well as with other histone marks (such as H3K4me3) suggesting a coordinated regulation of active histone marks. Moreover, the levels of H3K9ac and H3K14ac directly correlate with the CpG content of the promoters attesting the importance of sequences underlying the specifically modified nucleosomes. Our data provide evidence that H3K9ac and H3K14ac are also present over the previously described bivalent promoters, along with H3K4me3 and H3K27me3. Furthermore, like H3K27ac, H3K9ac and H3K14ac can also differentiate active enhancers from inactive ones. Although, H3K9ac and H3K14ac, a hallmark of gene activation exhibit remarkable correlation over active and bivalent promoters as well as distal regulatory elements, a subset of inactive promoters is selectively enriched for H3K14ac. Conclusions Our study suggests that chromatin modifications, such as H3K9ac and H3K14ac, are part of the active promoter state, are present over bivalent promoters and active enhancers and that the extent of H3K9 and H3K14 acetylation could be driven by cis regulatory elements such as CpG content at promoters. Our study also suggests that a subset of inactive promoters is selectively and specifically enriched for H3K14ac. This observation suggests that histone acetyl transferases (HATs) prime inactive genes by H3K14ac for stimuli dependent activation. In conclusion our study demonstrates a wider role for H3K9ac and H3K14ac in gene regulation than originally thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10.

              Two sublines of a breast epithelial cell culture, MCF-10, derived from human fibrocystic mammary tissue exhibit immortality after extended cultivation in low calcium concentrations (0.03-0.06 mM) and floating transfers in low calcium (MCF-10F), or by trypsin-Versene passages in the customary (normal) calcium levels, 1.05 mM (MCF-10A). Both sublines have been maintained as separate entities after 2.3 years (849 days) in vitro and at present have been in culture for longer than 4 years. MCF-10 has the characteristics of normal breast epithelium by the following criteria: (a) lack of tumorigenicity in nude mice; (b) three-dimensional growth in collagen; (c) growth in culture that is controlled by hormones and growth factors; (d) lack of anchorage-independent growth; and (e) dome formation in confluent cultures. Cytogenetic analysis prior to immortalization showed normal diploid cells; although later passages showed minimal rearrangement and near-diploidy, the immortal cells were not karyotypically normal. The emergence of an immortal culture in normal calcium media was not an inherent characteristic of the original tissue from which MCF-10 was derived since reactivated cryo-preserved cells from cultures grown for 0.3 and 1.2 years in low calcium were incapable of sustained growth in normal calcium.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                29 March 2024
                15 April 2024
                29 March 2024
                : 10
                : 7
                : e28827
                Affiliations
                [a ]Microbiology and Immunology Department, Fienberg School of Medicine, Northwestern University, Chicago, USA
                [b ]Department of Microbiology, and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
                Author notes
                [* ]Corresponding author. peter.pelka@ 123456umanitoba.ca
                [** ]Corresponding author. b-thimmapaya@ 123456northwestern.edu
                [1]

                Equal senior coauthors.

                Article
                S2405-8440(24)04858-8 e28827
                10.1016/j.heliyon.2024.e28827
                11004756
                38601626
                bc7b51b2-ed63-4eec-b08b-745e3f1b7106
                © 2024 The Authors

                This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

                History
                : 1 November 2023
                : 23 March 2024
                : 26 March 2024
                Categories
                Research Article

                adenovirus type 5,e1a,hbo1,viral replication,hat,chromatin
                adenovirus type 5, e1a, hbo1, viral replication, hat, chromatin

                Comments

                Comment on this article