Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The intrinsic defect structure of exfoliated MoS 2 single layers revealed by Scanning Tunneling Microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MoS 2 single layers have recently emerged as strong competitors of graphene in electronic and optoelectronic device applications due to their intrinsic direct bandgap. However, transport measurements reveal the crucial role of defect-induced electronic states, pointing out the fundamental importance of characterizing their intrinsic defect structure. Transmission Electron Microscopy (TEM) is able to image atomic scale defects in MoS 2 single layers, but the imaged defect structure is far from the one probed in the electronic devices, as the defect density and distribution are substantially altered during the TEM imaging. Here, we report that under special imaging conditions, STM measurements can fully resolve the native atomic scale defect structure of MoS 2 single layers. Our STM investigations clearly resolve a high intrinsic concentration of individual sulfur atom vacancies, and experimentally identify the nature of the defect induced electronic mid-gap states, by combining topographic STM images with ab intio calculations. Experimental data on the intrinsic defect structure and the associated defect-bound electronic states that can be directly used for the interpretation of transport measurements are essential to fully understand the operation, reliability and performance limitations of realistic electronic devices based on MoS 2 single layers.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging photoluminescence in monolayer MoS2.

          Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Atomically thin MoS2: A new direct-gap semiconductor

            The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 1, 2, ... 6 S-Mo-S monolayers have been investigated by optical spectroscopy. Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure. With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 0.6 eV. This leads to a crossover to a direct-gap material in the limit of the single monolayer. Unlike the bulk material, the MoS2 monolayer emits light strongly. The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 1000 compared with the bulk material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Control of valley polarization in monolayer MoS2 by optical helicity

              Electronic and spintronic devices rely on the fact that free charge carriers in solids carry electric charge and spin, respectively. There are, however, other properties of charge carriers that might be exploited in new families of devices. In particular, if there are two or more conduction (or valence) band extrema in momentum space, then confining charge carriers in one of these valleys allows the possibility of valleytronic devices. Such valley polarization has been demonstrated by using strain and magnetic fields, but neither of these approaches allow for dynamic control. Recently, optical control of valley occupancy in graphene with broken inversion symmetry has been proposed but remains experimentally difficult to realize. Here we demonstrate that optical pumping with circularly-polarized light can achieve complete dynamic valley polarization in monolayer MoS2, a two dimensional (2D) non-centrosymmetric crystal with direct energy gaps at two valleys. Moreover, this polarization is retained for longer than 1 ns. Our results demonstrate the viability of optical valley control and valley-based electronic and optoelectronic applications in MoS2 monolayers.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 July 2016
                2016
                : 6
                : 29726
                Affiliations
                [1 ]Centre for Energy Research, Institute of Technical Physics and Materials Science, 2D Nanoelectronics „Lendület” Research Group , Budapest, Hungary
                [2 ]Korea Research Institute of Standards and Science, Center for Nanometrology , Daejeon, South Korea
                [3 ]Centre for Energy Research, Institute of Technical Physics and Materials Science, Nanotechnology Department , Budapest, Hungary
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep29726
                10.1038/srep29726
                4957227
                27445217
                bd07bb65-1739-49a1-bc4c-5257ce142fc2
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 April 2016
                : 21 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article