18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropathic pain results from lesions or diseases of the somatosensory nervous system and it remains largely difficult to treat. Peripheral neuropathic pain originates from injury to the peripheral nervous system (PNS) and manifests as a series of symptoms and complications, including allodynia and hyperalgesia. The aim of this review is to discuss a novel approach on neuropathic pain management, which is based on the knowledge of processes that underlie the development of peripheral neuropathic pain; in particular highlights the role of glia and mast cells in pain and neuroinflammation. ALIAmides (autacoid local injury antagonist amides) represent a group of endogenous bioactive lipids, including palmitoylethanolamide (PEA), which play a central role in numerous biological processes, including pain, inflammation, and lipid metabolism. These compounds are emerging thanks to their anti-inflammatory and anti-hyperalgesic effects, due to the down-regulation of activation of mast cells. Collectively, preclinical and clinical studies support the idea that ALIAmides merit further consideration as therapeutic approach for controlling inflammatory responses, pain, and related peripheral neuropathic pain.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: not found

          The orphan receptor GPR55 is a novel cannabinoid receptor.

          The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes. Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways. We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1. These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment.

            Neuropathic pain develops as a result of lesions or disease affecting the somatosensory nervous system either in the periphery or centrally. Examples of neuropathic pain include painful polyneuropathy, postherpetic neuralgia, trigeminal neuralgia, and post-stroke pain. Clinically, neuropathic pain is characterised by spontaneous ongoing or shooting pain and evoked amplified pain responses after noxious or non-noxious stimuli. Methods such as questionnaires for screening and assessment focus on the presence and quality of neuropathic pain. Basic research is enabling the identification of different pathophysiological mechanisms, and clinical assessment of symptoms and signs can help to determine which mechanisms are involved in specific neuropathic pain disorders. Management of neuropathic pain requires an interdisciplinary approach, centred around pharmacological treatment. A better understanding of neuropathic pain and, in particular, of the translation of pathophysiological mechanisms into sensory signs will lead to a more effective and specific mechanism-based treatment approach. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pain regulation by non-neuronal cells and inflammation

              Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 July 2020
                August 2020
                : 21
                : 15
                : 5330
                Affiliations
                [1 ]Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; rdamico@ 123456unime.it (R.D.); dimpellizzeri@ 123456unime.it (D.I.); dipaolar@ 123456unime.it (R.D.P.)
                [2 ]Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
                Author notes
                [* ]Correspondence: salvator@ 123456unime.it ; Tel.: +39-90-6765208
                [†]

                The authors contributed equally to the work.

                Author information
                https://orcid.org/0000-0003-0389-3871
                https://orcid.org/0000-0001-9492-3161
                https://orcid.org/0000-0001-6131-3690
                https://orcid.org/0000-0001-6725-8581
                Article
                ijms-21-05330
                10.3390/ijms21155330
                7432736
                32727084
                be2b2a1a-dcd6-49bb-8653-8d7f30323ef1
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 July 2020
                : 24 July 2020
                Categories
                Review

                Molecular biology
                peripheral neuropathic pain,neuroinflammation,aliamides,palmitoylethanolamide

                Comments

                Comment on this article