15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antigenicity and Immunogenicity of Rotavirus VP6 Protein Expressed on the Surface of Lactococcus lactis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Group A rotaviruses are the major etiologic agents of acute gastroenteritis worldwide in children and young animals. Among its structural proteins, VP6 is the most immunogenic and is highly conserved within this group. Lactococcus lactis is a food-grade, Gram-positive, and nonpathogenic lactic acid bacteria that has already been explored as a mucosal delivery system of heterologous antigens. In this work, the nisin-controlled expression system was used to display the VP6 protein at the cell surface of L. lactis. Conditions for optimal gene expression were established by testing different nisin concentrations, cell density at induction, and incubation times after induction. Cytoplasmic and cell wall protein extracts were analyzed by Western blot and surface expression was confirmed by flow cytometry. Both analysis provided evidence that VP6 was efficiently expressed and displayed on the cell surface of L. lactis. Furthermore, the humoral response of mice immunized with recombinant L. lactis was evaluated and the displayed recombinant VP6 protein proved to be immunogenic. In conclusion, this is the first report of displaying VP6 protein on the surface of L. lactis to induce a specific immune response against rotavirus. These results provide the basis for further evaluation of this VP6-displaying L. lactis as a mucosal delivery vector in a mouse model of rotavirus infection.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis.

          Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago-the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity.

            Rotaviruses are the leading cause of severe gastroenteritis and dehydrating diarrhea in young children and animals worldwide. A murine model and "backpack tumor" transplantation were used to determine the protective effect of antibodies against VP4(an outer capsid viral protein) and VP6(a major inner capsid viral protein). Only two non-neutralizing immunoglobulin A (IgA) antibodies to VP6 were capable of preventing primary and resolving chronic murine rotavirus infections. These antibodies were not active, however, when presented directly to the luminal side of the intestinal tract. These findings support the hypothesis that in vivo intracellular viral inactivation by secretory IgA during transcytosis is a mechanism of host defense against rotavirus infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines

              Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                24 July 2013
                : 2013
                : 298598
                Affiliations
                Laboratorio de Inmunología y Virología (LIV), Universidad Nacional de Quilmes, Bernal, B1876BXD Buenos Aires, Argentina
                Author notes

                Academic Editor: Jose R. Botella

                Article
                10.1155/2013/298598
                3741945
                23984337
                be6dc948-a9a9-4cd8-b203-b0a3b92a8c68
                Copyright © 2013 L. E. Esteban et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 April 2013
                : 25 June 2013
                : 9 July 2013
                Categories
                Research Article

                Comments

                Comment on this article