37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8 + T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads ( P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8 + T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls ( P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8 + T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8 + T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8 + T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients.

          Author Summary

          Systemic Lupus Erythematosus (SLE) has been associated with Epstein-Barr Virus (EBV) infection for decades, however the mechanistic links have remained elusive. Most human adults are infected by EBV and carry the virus for life without clinical symptoms. However, for unknown reasons EBV induces infectious mononucleosis in some individuals, during which cross-reactive antibodies specific for both virus and self have been detected. Interestingly, such cross-reactive antibodies are also frequently found in SLE patients. Since, EBV seropositivity and viremia are more frequent in SLE patients than in healthy individuals, it has been postulated that EBV trigger autoimmunity. Here we show that SLE patients are indeed less capable of controlling EBV viremia, since their EBV-specific CD8 + T cells have diminished capacity to secrete effector molecules (e.g. cytokines and chemokines) and to kill EBV-infected targets as a consequence of their Programmed Death 1 (PD-1) receptor up-regulation. Longitudinal studies further reveal that disease flares precede EBV viremia. Thus, contrary to expectations, EBV reactivation appears to be an aggravating consequence, rather than a cause, of SLE immunopathology. Our results pave the way for immunological interventions that restore the host-EBV balance, which may result in decreased levels of aggravating cross-reactive antibodies and ultimately be beneficial to SLE patients.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus.

          M Hochberg (1997)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein

            Structural similarity between viral T cell epitopes and self-peptides could lead to the induction of an autoaggressive T cell response. Based on the structural requirements for both MHC class 11 binding and TCR recognition of an immunodominant myelin basic protein (MBP) peptide, criteria for a data base search were developed in which the degeneracy of amino acid side chains required for MHC class 11 binding and the conservation of those required for T cell activation were considered. A panel of 129 peptides that matched the molecular mimicry motif was tested on seven MBP-specific T cell clones from multiple sclerosis patients. Seven viral and one bacterial peptide efficiently activated three of these clones. Only one peptide could have been identified as a molecular mimic by sequence alignment. The observation that a single T cell receptor can recognize quite distinct but structurally related peptides from multiple pathogens has important implications for understanding the pathogenesis of autoimmunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus.

              Dendritic cells (DCs) are important in regulating both immunity and tolerance. Hence, we hypothesized that systemic lupus erythematosus (SLE), an autoimmune disease characterized by autoreactive B and T cells, may be caused by alterations in the functions of DCs. Consistent with this, monocytes from SLE patients' blood were found to function as antigen-presenting cells, in vitro. Furthermore, serum from SLE patients induced normal monocytes to differentiate into DCs. These DCs could capture antigens from dying cells and present them to CD4-positive T cells. The capacity of SLE patients' serum to induce DC differentiation correlated with disease activity and depended on the actions of interferon-alpha (IFN-alpha). Thus, unabated induction of DCs by IFN-alpha may drive the autoimmune response in SLE.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2011
                October 2011
                20 October 2011
                : 7
                : 10
                : e1002328
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 945, Paris, France
                [2 ]UPMC Université Paris 06, Paris, France
                [3 ]Laboratoire AP-HP de Virologie, C.H.U. Pitié-Salpêtrière, Paris, France
                [4 ]Service de Médecine Interne 2, Centre National de Référence des Lupus et Syndrome des Antiphospholipides, C.H.U. Pitié-Salpêtrière, Paris, France
                [5 ]Laboratoire AP-HP d'Immunologie Cellulaire et Tissulaire, Paris, France
                NIH/NIAID, United States of America
                Author notes

                Conceived and designed the experiments: ML DS ZA GG. Performed the experiments: ML DS CD DB KD CP. Analyzed the data: ML DS. Contributed reagents/materials/analysis tools: LP LA AM MM ZA. Wrote the paper: ML DS LA VA ZA GG.

                Article
                PPATHOGENS-D-11-00710
                10.1371/journal.ppat.1002328
                3197610
                22028659
                bf4738b0-de6f-4e39-9a63-669dd1eb52f5
                Larsen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 April 2011
                : 6 September 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Medicine
                Clinical Immunology
                Autoimmune Diseases
                Lupus Erythematosus
                Immune Cells
                T Cells
                Immunity
                Immunity to Infections
                Infectious Diseases
                Viral Diseases
                Epstein-Barr virus infectious mononucleosis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article