2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parainfluenza virus types 1–4 (PIV1–4) are highly infectious human pathogens, of which PIV3 is most commonly responsible for severe respiratory illness in newborns, elderly, and immunocompromised individuals. To obtain a vaccine effective against all four PIV types, we engineered mutations in each of the four PIV fusion (F) glycoproteins to stabilize their metastable prefusion states, as such stabilization had previously enabled the elicitation of high-titer neutralizing antibodies against the related respiratory syncytial virus. A cryoelectron microscopy structure of an engineered PIV3 F prefusion-stabilized trimer, bound to the prefusion-specific antibody PIA174, revealed atomic-level details for how introduced mutations improved stability as well as how a single PIA174 antibody recognized the trimeric apex of prefusion PIV3 F. Nine combinations of six newly identified disulfides and two cavity-filling mutations stabilized the prefusion PIV3 F immunogens and induced 200- to 500-fold higher neutralizing titers in mice than were elicited by PIV3 F in the postfusion conformation. For PIV1, PIV2, and PIV4, we also obtained stabilized prefusion Fs, for which prefusion versus postfusion titers were 2- to 20-fold higher. Elicited murine responses were PIV type-specific, with little cross-neutralization of other PIVs. In nonhuman primates (NHPs), quadrivalent immunization with prefusion-stabilized Fs from PIV1–4 consistently induced potent neutralizing responses against all four PIVs. For PIV3, the average elicited NHP titer from the quadrivalent immunization was more than fivefold higher than any titer observed in a cohort of over 100 human adults, highlighting the ability of a prefusion-stabilized immunogen to elicit especially potent neutralization.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Community-acquired pneumonia requiring hospitalization among U.S. children.

          Incidence estimates of hospitalizations for community-acquired pneumonia among children in the United States that are based on prospective data collection are limited. Updated estimates of pneumonia that has been confirmed radiographically and with the use of current laboratory diagnostic tests are needed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure

              Summary Broadly neutralizing antibodies (bnAbs) to HIV delineate vaccine targets and are prophylactic and therapeutic agents. Some of the most potent bnAbs target a quaternary epitope at the apex of the surface HIV envelope (Env) trimer. Using cryo-electron microscopy, we solved the atomic structure of an apex bnAb, PGT145, in complex with Env. We showed that the long anionic HCDR3 of PGT145 penetrated between glycans at the trimer 3-fold axis, to contact peptide residues from all three Env protomers, and thus explains its highly trimer-specific nature. Somatic hypermutation in the other CDRs of PGT145 were crucially involved in stabilizing the structure of the HCDR3, similar to bovine antibodies, to aid in recognition of a cluster of conserved basic residues hypothesized to facilitate trimer disassembly during viral entry. Overall, the findings exemplify the creative solutions that the human immune system can evolve to recognize a conserved motif buried under a canopy of glycans.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 27 2018
                November 27 2018
                November 27 2018
                November 12 2018
                : 115
                : 48
                : 12265-12270
                Article
                10.1073/pnas.1811980115
                6275507
                30420505
                bf4cb6d7-0174-4042-bb7f-3eb7ed39c56a
                © 2018
                History

                Comments

                Comment on this article