25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nitric oxide and hydrogen sulfide in plants: which comes first?

      1 , 1 , 1 , 1
      Journal of Experimental Botany
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: not found
          • Article: not found

          Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            H2S signals through protein S-sulfhydration.

            Hydrogen sulfide (H2S), a messenger molecule generated by cystathionine gamma-lyase, acts as a physiologic vasorelaxant. Mechanisms whereby H2S signals have been elusive. We now show that H2S physiologically modifies cysteines in a large number of proteins by S-sulfhydration. About 10 to 25% of many liver proteins, including actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are sulfhydrated under physiological conditions. Sulfhydration augments GAPDH activity and enhances actin polymerization. Sulfhydration thus appears to be a physiologic posttranslational modification for proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide functions as a signal in plant disease resistance.

              Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.
                Bookmark

                Author and article information

                Journal
                Journal of Experimental Botany
                Oxford University Press (OUP)
                0022-0957
                1460-2431
                January 30 2019
                January 30 2019
                Affiliations
                [1 ]Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
                Article
                10.1093/jxb/erz031
                30715479
                c0ba6d3e-97c0-41ca-89a7-d096d8076b9d
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article