12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Transmission Chain Analysis of 2014–2015 Ebola Virus Disease Outbreak in Koinadugu District, Sierra Leone: An Observational Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Sierra Leone experienced an unprecedented Ebola virus disease (EVD) outbreak in all its districts. Koinadugu District was the last to report an EVD case. Several outbreak response strategies were implemented. As part of lessons learnt, we conducted an observational study to describe the transmission chain in the district and the impact of the control measures implemented to contain the outbreak.

          Methods

          We reconstructed the transmission chain, positioning both confirmed and probable cases, described the distribution of the EVD confirmed cases in the context of the routes of transmission (Community, Funeral or Health facility setting) and assessed the impact of control measures using the surveillance data collected during the outbreak.

          Results

          All 142 confirmed and probable EVD cases registered were fully resolved in the transmission chain. 72.5% of all the EVD cases in the district were exposed in the community, 26.1% exposed during funerals, and 1.4% exposed in the health facility setting. Health-care workers contributed little to the EVD outbreak. 71.1% of EVD transmission occurred among family members. Female EVD cases generated more secondary cases than their male counterparts ( P = 0.03). With removal of EVD cases from the community and admission to the community care center (CCC), the EVD transmission in the community decreased to substantially lower rates. In addition, transmission due to exposure in health facilities was further reduced with the implementation of full infection and prevention controls.

          Conclusion

          This study details the transmission chain of EVD in a rural district setting and the public health interventions implemented to successfully limit the outbreak to just one of 11 chiefdoms. Heightened community-based surveillance for early case detection, swift isolation of suspect cases, efficient contact tracing and monitoring, and good infection prevention and control measures in health facilities were highly effective in limiting transmission and, eventually, breaking the transmission chain. CCCs were also instrumental in achieving early isolation and basic care for suspect cases, while ensuring that their family members who were close contacts remained in the community for easy contact tracing and monitoring. These were very useful lessons learnt that would inform the management of future outbreaks.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Preliminary Report.

          Background Ebola virus has been detected in the semen of men after their recovery from Ebola virus disease (EVD), but little information is available about its prevalence or the duration of its persistence. We report the initial findings of a pilot study involving survivors of EVD in Sierra Leone. Methods We enrolled a convenience sample of 100 male survivors of EVD in Sierra Leone, at different times after their recovery from EVD, and recorded self-reported information about sociodemographic characteristics, the EVD episode, and health status. Semen specimens obtained at baseline were tested by means of a quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay with the use of the target-gene sequences of NP and VP40. Results A total of 93 participants provided an initial semen specimen for analysis, of whom 46 (49%) had positive results on quantitative RT-PCR. Ebola virus RNA was detected in the semen of all 9 men who had a specimen obtained 2 to 3 months after the onset of EVD, in the semen of 26 of 40 (65%) who had a specimen obtained 4 to 6 months after onset, and in the semen of 11 of 43 (26%) who had a specimen obtained 7 to 9 months after onset; the results for 1 participant who had a specimen obtained at 10 months were indeterminate. The median cycle-threshold values (for which higher values indicate lower RNA levels) were 32.0 with the NP gene target and 31.1 with the VP40 gene target for specimens obtained at 2 to 3 months, 34.5 and 32.3, respectively, for specimens obtained at 4 to 6 months, and 37.0 and 35.6, respectively, for specimens obtained at 7 to 9 months. Conclusions These data showed the persistence of Ebola virus RNA in semen and declining persistence with increasing months since the onset of EVD. We do not yet have data on the extent to which positivity on RT-PCR is associated with virus infectivity. Although cases of suspected sexual transmission of Ebola have been reported, they are rare; hence the risk of sexual transmission of the Ebola virus is being investigated. (Funded by the World Health Organization and others.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Possible Sexual Transmission of Ebola Virus — Liberia, 2015

            On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset (1). One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive (2). In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968 (3). This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia’s latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time (4). On March 14, 2015, a woman from Monrovia aged 44 years (patient A) developed headache, weakness, joint pain and nausea. She went to a hospital on March 19, and was triaged as a suspected Ebola patient to a nearby transit center (a facility for rapid isolation, diagnosis, and referral of Ebola patients). On March 20, Ebola was confirmed by reverse transcription–polymerase chain reaction (RT-PCR). Genomic sequencing of Ebola virus from her blood specimen identified six mutations not found in 25 other genomes sequenced from Liberia (5) or in 107 genomes obtained from Guinea, Mali, and Sierra Leone (6–8). The investigation found no history of travel by patient A, no interaction with visitors from Sierra Leone or Guinea, no recent funeral attendance, and no contact with a person with symptoms consistent with Ebola. Patient A did report unprotected vaginal intercourse on March 7, 2015, with an Ebola survivor (survivor A), a man aged 46 years from another community in Monrovia. Survivor A had experienced onset of symptoms consistent with Ebola, including fever, anorexia, and headache on September 9, 2014, and was admitted to an Ebola treatment unit on September 23. His first test by RT-PCR on September 28, 2014, was indeterminate (positive on one assay with a cycle threshold of 40 indicating a low viral load and negative on a second assay). A second specimen was negative by RT-PCR on October 3, 2014. Survivor A was discharged from the Ebola treatment unit on October 7, 2014 and reported no subsequent illness or symptoms. Survivor A had multiple family members with whom he lived or interacted with confirmed or suspected Ebola during the same period as his symptoms and Ebola treatment unit admission (Table). His older brother was confirmed with Ebola on September 5, 2014, from a postmortem blood specimen. Survivor A’s younger brother and daughter were admitted to an Ebola treatment unit on September 23, 2014, with symptoms consistent with Ebola. His younger brother died on September 25 and his daughter died sometime before September 28. No laboratory results were available for survivor A’s younger brother or daughter. Survivor A’s son entered a holding center on October 8, 2014, was confirmed to have Ebola on October 11 and died soon thereafter. A new blood specimen was collected from survivor A on March 23, 2015, as part of patient A’s case investigation. The specimen was negative for Ebola virus by RT-PCR. Enzyme-linked immunosorbent assays for Ebola virus glycoprotein- and nucleoprotein-specific immunoglobulin G (IgG) antibodies were positive; immunoglobulin M (IgM) was undetectable. A semen specimen, collected from survivor A on March 27, 2015, was positive by RT-PCR with a cycle threshold of 32. Complete genome sequencing of the viral RNA from survivor A’s semen has not been possible to date given the low level of detectable viral nucleic acid. However, the partial sequence obtained so far (28% of the genome) closely matches the sequence from patient A. A rapid diagnostic test was conducted to evaluate human immunodeficiency virus (HIV) as a possible reason for long-term viral shedding. The HIV test was negative. In addition to patient A, survivor A reported recent unprotected vaginal intercourse with a woman aged 45 years (contact A) with no history of illness. Intercourse with contact A occurred on three to five occasions between the last week of February and March 15, 2015. A blood specimen collected from contact A on March 27, 2015 was negative for Ebola virus–specific IgG and IgM. Since January 21, 2015, all new confirmed cases of Ebola in Liberia have been epidemiologically linked to a single transmission chain (CDC Liberia Ebola Response Team, unpublished data, 2015). Ebola viral RNA from three of the 22 confirmed cases in this transmission chain (with onset dates of January 8, January 27, and February 9, 2015) were sequenced and compared with the genetic material from patient A. None of the sequences from these isolates shared the mutations observed in patient A’s isolate. Discussion Available epidemiologic and laboratory findings indicate that patient A may have been exposed to Ebola virus through sexual contact with survivor A, whose semen was PCR-positive 199 days (September 9, 2014 to March 27, 2015) after his likely Ebola onset. Although the diagnostic RT-PCR in September was indeterminate, survivor A’s positive enzyme-linked immunosorbent assays, specifically against the viral nucleoprotein, indicate previous Ebola virus infection. His clinical course and epidemiologic links suggest that he had Ebola in early September 2014. The diagnostic tests were performed 18 and 24 days after symptom onset, and the results may have reflected convalescence. Although less likely, it is also possible that his Ebola virus infection occurred later and the indeterminate test result reflected the absence of Ebola virus in September 2014. Ebola virus RNA in survivor A’s semen in March 2015 does not prove the presence of infectious virus. However, the absence of patient A’s genetic signature in sequenced RNA from three patients in Liberia’s last known cluster of epidemiologically-linked cases makes it unlikely that patient A was infected from unrecognized, ongoing community transmission. Culture of survivor A’s semen specimen for Ebola virus is planned to determine whether viable virus was present. It is not possible to definitively ascribe Ebola infection in patient A to transmission from survivor A, and another sexual partner or other source cannot be excluded. However, the timing of intercourse between survivor A and patient A, the subsequent illness in patient A, the presence of viral RNA in survivor A’s semen, matching genetic sequences (where coverage has been obtained) in isolates from survivor A and patient A, and the lack of other known exposures suggest possible sexual transmission. Enrichment methods are being applied to survivor A’s semen sample to amplify existing Ebola virus RNA and complete genomic sequencing. Other limitations of the investigation include 1) the relatively small number of sequenced genomes from Ebola patients in this epidemic, which limits an assessment of the generalizability of the molecular findings; and 2) incomplete laboratory results and Ebola treatment unit and hospital records for some of survivor A’s family members, preventing confirmation of Ebola and exact dates of death. Previously, CDC and WHO recommended abstinence or condom use for at least 3 months following recovery from Ebola. However, to prevent transmission of Ebola, contact with semen from male survivors should be avoided. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time until further information is known. Used condoms should be handled and disposed of safely to avoid contact with semen. After handling of condoms, or following any physical contact with semen, skin should be washed thoroughly with soap and water. Based on information from this investigation, CDC, the World Health Organization, and the Government of Liberia issued updated recommendations for survivors (4,9,10). Investigations of several other recent Ebola cases in West Africa have suggested sexual transmission from survivors but have not been confirmed (CDC Emergency Operations Center, unpublished data, 2015). Additional studies are planned to determine clearance, persistence, and shedding of Ebola virus in body fluids of survivors and to evaluate possible sexual transmission of infection. Use of RT-PCR testing of semen (e.g., evidence of two negative tests) might be a useful tool for assessing and counseling male survivors on measures they should take to prevent transmission of Ebola virus. CDC and other public health partners are reviewing existing data to determine the validity and feasibility of potential recommendations. What is already known on this topic? Ebola virus persists in seminal fluid following recovery, but the duration of viral shedding and the likelihood of sexual transmission are not known. Earlier studies have demonstrated that the virus can be isolated from semen as long as 82 days after symptom onset, and that semen can be positive by reverse transcription–polymerase chain reaction, indicating presence of viral RNA, up to 101 days after onset. Possible sexual transmission was reported in 1968 for Marburg virus, a related filovirus, but has not been clearly documented for Ebola. What is added by this report? Ebola virus can persist in the seminal fluid of convalescent men for longer than previously recognized and can potentially lead to sexual transmission of Ebola. What are the implications for public health practice? Until more information is known, contact with semen from a male survivor should be avoided. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time. Additional studies are planned to examine Ebola virus persistence in body fluids of male and female convalescent patients and the likelihood of sexual transmission. Transmission of Ebola in West Africa has diminished over the past few months. However, awareness of possible sexual transmission from survivors to partners and the importance of prevention measures is needed. Sufficient supplies of condoms and counseling to promote their correct and consistent use should be provided as part of the response in Ebola-affected countries. In addition, efforts should be undertaken to prevent the possibility of sexual transmission from stigmatizing survivors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ebola haemorrhagic fever outbreak in Masindi District, Uganda: outbreak description and lessons learned

              Background Ebola haemorrhagic fever (EHF) is infamous for its high case-fatality proportion (CFP) and the ease with which it spreads among contacts of the diseased. We describe the course of the EHF outbreak in Masindi, Uganda, in the year 2000, and report on response activities. Methods We analysed surveillance records, hospital statistics, and our own observations during response activities. We used Fisher's exact tests for differences in proportions, t-tests for differences in means, and logistic regression for multivariable analysis. Results The response to the outbreak consisted of surveillance, case management, logistics and public mobilisation. Twenty-six EHF cases (24 laboratory confirmed, two probable) occurred between October 21st and December 22nd, 2000. CFP was 69% (18/26). Nosocomial transmission to the index case occurred in Lacor hospital in Gulu, outside the Ebola ward. After returning home to Masindi district the index case became the origin of a transmission chain within her own extended family (18 further cases), from index family members to health care workers (HCWs, 6 cases), and from HCWs to their household contacts (1 case). Five out of six occupational cases of EHF in HCWs occurred after the introduction of barrier nursing, probably due to breaches of barrier nursing principles. CFP was initially very high (76%) but decreased (20%) due to better case management after reinforcing the response team. The mobilisation of the community for the response efforts was challenging at the beginning, when fear, panic and mistrust had to be countered by the response team. Conclusions Large scale transmission in the community beyond the index family was prevented by early case identification and isolation as well as quarantine imposed by the community. The high number of occupational EHF after implementing barrier nursing points at the need to strengthen training and supervision of local HCWs. The difference in CFP before and after reinforcing the response team together with observations on the ward suggest a critical role for intensive supportive treatment. Collecting high quality clinical data is a priority for future outbreaks in order to identify the best possible FHF treatment regime under field conditions.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/408599
                URI : http://frontiersin.org/people/u/446465
                URI : http://frontiersin.org/people/u/371094
                URI : http://frontiersin.org/people/u/449157
                Journal
                Front Public Health
                Front Public Health
                Front. Public Health
                Frontiers in Public Health
                Frontiers Media S.A.
                2296-2565
                10 July 2017
                2017
                : 5
                : 160
                Affiliations
                [1] 1Institute of Tropical Medicine and International Health, Charité Universitätsmedizin , Berlin, Germany
                [2] 2World Health Organization (WHO) , Koinadugu, Sierra Leone
                [3] 3District Health Management Health (DHMT) , Koinadugu, Sierra Leone
                [4] 4African Union Support to EVD Outbreak in West Africa, The African Union Commission , Koinadugu, Sierra Leone
                [5] 5World Health Organization (WHO), Country Office , Freetown, Sierra Leone
                Author notes

                Edited by: MarkAlain Dery, Tulane University School of Medicine, United States

                Reviewed by: Leonard Cole, Rutgers New Jersey Medical School, United States; Luca M. Rosi, Istituto Superiore di Sanità, Italy

                *Correspondence: Ifeanyi-Stanley Muoghalu, ifeanyi-stanley.muoghalu@ 123456charite.de

                Joint first authorship.

                Specialty section: This article was submitted to Disaster and Emergency Medicine, a section of the journal Frontiers in Public Health

                Article
                10.3389/fpubh.2017.00160
                5502283
                c130e518-c3b0-408c-ae60-2e90a6021cee
                Copyright © 2017 Muoghalu, Moses, Conteh, Swaray, Ajudua and Nordström.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 January 2017
                : 20 June 2017
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 17, Pages: 10, Words: 6360
                Categories
                Public Health
                Original Research

                ebola virus disease,transmission chain,outbreak response,epidemiology,public health intervention,community care center,koinadugu,sierra leone

                Comments

                Comment on this article