40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genotypic Characterization of Escherichia coli O157:H7 Isolates from Different Sources in the North-West Province, South Africa, Using Enterobacterial Repetitive Intergenic Consensus PCR Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In many developing countries, proper hygiene is not strictly implemented when animals are slaughtered and meat products become contaminated. Contaminated meat may contain Escherichia coli ( E. coli) O157:H7 that could cause diseases in humans if these food products are consumed undercooked. In the present study, a total of 94 confirmed E. coli O157:H7 isolates were subjected to the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR) typing to generate genetic fingerprints. The ERIC fragments were resolved by electrophoresis on 2% ( w/ v) agarose gels. The presence, absence and intensity of band data were obtained, exported to Microsoft Excel (Microsoft Office 2003) and used to generate a data matrix. The unweighted pair group method with arithmetic mean (UPGMA) and complete linkage algorithms were used to analyze the percentage of similarity and matrix data. Relationships between the various profiles and/or lanes were expressed as dendrograms. Data from groups of related lanes were compiled and reported on cluster tables. ERIC fragments ranged from one to 15 per isolate, and their sizes varied from 0.25 to 0.771 kb. A large proportion of the isolates produced an ERIC banding pattern with three duplets ranging in sizes from 0.408 to 0.628 kb. Eight major clusters (I–VIII) were identified. Overall, the remarkable similarities (72% to 91%) between the ERIC profiles for the isolate from animal species and their corresponding food products indicated some form of contamination, which may not exclude those at the level of the abattoirs. These results reveal that ERIC PCR analysis can be reliable in comparing the genetic profiles of E. coli O157:H7 from different sources in the North-West Province of South Africa.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diarrheagenic Escherichia coli.

            Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli.

              Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) adhere to the intestinal mucosa and produce an attaching and effacing (AE) lesion in the brush border microvillous membrane; the AE lesion is characterized by localized destruction of microvilli and intimate attachment of bacteria to the apical enterocyte membrane. A similar lesion is seen when bacteria adhere in vitro to a variety of human tissue culture cell lines. In both cases, dense concentrations of microfilaments are present in the apical cytoplasm beneath attached bacteria. Using a fluorescein-labeled phallotoxin, we have shown that these microfilaments are composed of actin. Cells infected with EPEC and EHEC strains known from electron microscopic studies to produce the AE lesion all exhibited intense spots of fluorescence which corresponded in size and position with each adherent bacterium; cells infected with adherent E. coli strains known not to produce the AE lesion did not produce this striking pattern of fluorescence and were indistinguishable from uninfected control cells. These results indicate that such site-specific concentrations of cytoskeletal actin are characteristic of the AE membrane lesion and can form the basis of a simple, highly sensitive diagnostic test for EPEC and EHEC.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 May 2014
                June 2014
                : 15
                : 6
                : 9735-9747
                Affiliations
                [1 ]Department of Biological Sciences, North West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
                [2 ]Department of Water and Sanitation, University of Limpopo, Turfloop Campus, Private Bag X1106, Sovenga 0727, South Africa; E-Mail: moses.mbewe@ 123456ul.ac.za
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: atebacollins1@ 123456hotmail.com or 16528026@ 123456nwu.ac.za ; Tel./Fax: +27-18-389-2247.
                Article
                ijms-15-09735
                10.3390/ijms15069735
                4100117
                24886815
                c1587066-8a49-46d5-bb79-caa981618eb2
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 12 March 2014
                : 04 May 2014
                : 06 May 2014
                Categories
                Article

                Molecular biology
                e. coli o157:h7,enterobacterial repetitive intergenic consensus (eric) sequences,bacterial source tracking (bst),genetic fingerprints,unweighted pair group method with arithmetic mean

                Comments

                Comment on this article