12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          We performed a first-in-human clinical trial on ultrasound molecular imaging (USMI) in patients with breast and ovarian lesions using a clinical-grade contrast agent (kinase insert domain receptor [KDR] –targeted contrast microbubble [MB KDR]) that is targeted at the KDR, one of the key regulators of neoangiogenesis in cancer. The aim of this study was to assess whether USMI using MB KDR is safe and allows assessment of KDR expression using immunohistochemistry (IHC) as the gold standard.

          Methods

          Twenty-four women (age 48 to 79 years) with focal ovarian lesions and 21 women (age 34 to 66 years) with focal breast lesions were injected intravenously with MB KDR (0.03 to 0.08 mL/kg of body weight), and USMI of the lesions was performed starting 5 minutes after injection up to 29 minutes. Blood pressure, ECG, oxygen levels, heart rate, CBC, and metabolic panel were obtained before and after MB KDR administration. Persistent focal MB KDR binding on USMI was assessed. Patients underwent surgical resection of the target lesions, and tissues were stained for CD31 and KDR by IHC.

          Results

          USMI with MB KDR was well tolerated by all patients without safety concerns. Among the 40 patients included in the analysis, KDR expression on IHC matched well with imaging signal on USMI in 93% of breast and 85% of ovarian malignant lesions. Strong KDR-targeted USMI signal was present in 77% of malignant ovarian lesions, with no targeted signal seen in 78% of benign ovarian lesions. Similarly, strong targeted signal was seen in 93% of malignant breast lesions with no targeted signal present in 67% of benign breast lesions.

          Conclusion

          USMI with MB KDR is clinically feasible and safe, and KDR-targeted USMI signal matches well with KDR expression on IHC. This study lays the foundation for a new field of clinical USMI in cancer.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.

          New blood vessel formation (angiogenesis) is a fundamental event in the process of tumor growth and metastatic dissemination. Hence, the molecular basis of tumor angiogenesis has been of keen interest in the field of cancer research. The vascular endothelial growth factor (VEGF) pathway is well established as one of the key regulators of this process. The VEGF/VEGF-receptor axis is composed of multiple ligands and receptors with overlapping and distinct ligand-receptor binding specificities, cell-type expression, and function. Activation of the VEGF-receptor pathway triggers a network of signaling processes that promote endothelial cell growth, migration, and survival from pre-existing vasculature. In addition, VEGF mediates vessel permeability, and has been associated with malignant effusions. More recently, an important role for VEGF has emerged in mobilization of endothelial progenitor cells from the bone marrow to distant sites of neovascularization. The well-established role of VEGF in promoting tumor angiogenesis and the pathogenesis of human cancers has led to the rational design and development of agents that selectively target this pathway. Studies with various anti-VEGF/VEGF-receptor therapies have shown that these agents can potently inhibit angiogenesis and tumor growth in preclinical models. Recently, an anti-VEGF antibody (bevacizumab), when used in combination with chemotherapy, was shown to significantly improve survival and response rates in patients with metastatic colorectal cancer and thus, validate VEGF pathway inhibitors as an important new treatment modality in cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

            The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics.

              Ultrasound imaging is clinically established for routine screening examinations of breast, abdomen, neck, and other soft tissues, as well as for therapy monitoring. Microbubbles as vascular contrast agents improve the detection and characterization of cancerous lesions, inflammatory processes, and cardiovascular pathologies. Taking advantage of the excellent sensitivity and specificity of ultrasound for microbubble detection, molecular imaging can be realized by binding antibodies, peptides, and other targeting moieties to microbubble surfaces. Molecular microbubbles directed against various targets such as vascular endothelial growth factor receptor-2, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, selectins, and integrins were developed and were shown in preclinical studies to be able to selectively bind to tumor blood vessels and atherosclerotic plaques. Currently, the first microbubble formulations targeted to angiogenic vessels in prostate cancers are being evaluated clinically. However, microbubbles can be used for more than diagnosis: disintegrating microbubbles emit acoustic forces that are strong enough to induce thrombolysis, and they can also be used for facilitating drug and gene delivery across biologic barriers. This review on the use of microbubbles for ultrasound-based molecular imaging, therapy, and theranostics addresses innovative concepts and identifies areas in which clinical translation is foreseeable in the near future.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Oncology
                JCO
                American Society of Clinical Oncology (ASCO)
                0732-183X
                1527-7755
                July 01 2017
                July 01 2017
                : 35
                : 19
                : 2133-2140
                Affiliations
                [1 ]Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy.
                Article
                10.1200/JCO.2016.70.8594
                5493049
                28291391
                c166b453-fe73-4267-ab24-89786efcec01
                © 2017
                History

                Comments

                Comment on this article