9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered brain metabolites in patients with diabetes mellitus and related complications – evidence from 1H MRS study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, diabetes mellitus (DM) has been acknowledged as an important factor for brain disorders. Significant alterations in brain metabolism have been demonstrated during the development of DM and its complications. Magnetic resonance spectroscopy (MRS), a cutting-edge technique used in biochemical analyses, non-invasively provides insights into altered brain metabolite levels in vivo. This review aims to discuss current MRS data describing brain metabolite levels in DM patients with or without complications. Cerebral metabolites including N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (mI), glutamate, and glutamine were significantly altered in DM patients, suggesting that energy metabolism, neurotransmission, and lipid membrane metabolism might be disturbed during the progression of DM. Changes in brain metabolites may be non-invasive biomarkers for DM and DM-related complications. Different brain regions presented distinct metabolic signatures, indicating region-specific diabetic brain damages. In addition to serving as biomarkers, MRS data on brain metabolites can also shed light on diabetic treatment monitoring. For example, exercise may restore altered brain metabolite levels and has beneficial effects on cognition in DM patients. Future studies should validate the above findings in larger populations and uncover the mechanisms of DM-induced brain damages.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical proton MR spectroscopy in central nervous system disorders.

          A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. RSNA, 2014
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cognition and diabetes: a lifespan perspective.

            Diabetes mellitus is associated with cognitive dysfunction and abnormalities that can be seen with brain imaging. Recent studies provide important new insights into the nature and severity of these cerebral complications that help to explain why some patients with diabetes have clinically relevant neurocognitive morbidity, whereas most are apparently unaffected. This Personal View investigates the hypothesis that clinically relevant diabetes-related cognitive decrements mainly occur at two crucial periods in life: when the brain is developing in childhood, and when the brain undergoes neurodegenerative changes associated with ageing. Outside of these periods cognitive decrements mainly occur in patients with notable diabetes-related comorbidities, in particular microvascular or macrovascular complications. The identification of crucial periods and conditions for the development of diabetes-related cognitive decrements helps to draw the attention of physicians to individuals at risk and can direct future studies into the mechanisms that underlie these conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study.

              Mild cognitive impairment (MCI) is a recently described transitional clinical state between normal aging and AD. Assuming that amnestic MCI patients had pathologic changes corresponding to an early phase and probable AD patients to a later phase of the disease progression, the authors could approximate the temporal course of proton MR spectroscopic (1H MRS) alterations in AD with a cross-sectional sampling scheme. The authors compared 1H MRS findings in the superior temporal lobe, posterior cingulate gyri, and medial occipital lobe in 21 patients with MCI, 21 patients with probable AD, and 63 elderly controls. These areas are known to be involved at different neurofibrillary pathologic stages of AD. The N-acetylaspartate (NAA)/creatine (Cr) ratios were significantly lower in AD patients compared to both MCI and normal control subjects in the left superior temporal and the posterior cingulate volumes of interest (VOI) and there were no between-group differences in the medial occipital VOI. Myoinositol (MI)/Cr ratios measured from the posterior cingulate VOI were significantly higher in both MCI and AD patients than controls. The choline (Cho)/Cr ratios measured from the posterior cingulate VOI were higher in AD patients compared to both MCI and control subjects. These findings suggest that the initial 1H MRS change in the pathologic progression of AD is an increase in MI/Cr. A decrease in NAA/Cr and an increase in Cho/Cr develop later in the disease course.
                Bookmark

                Author and article information

                Journal
                Biosci Rep
                Biosci. Rep
                ppbioscirep
                BSR
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                13 August 2018
                07 September 2018
                31 October 2018
                : 38
                : 5
                : BSR20180660
                Affiliations
                [1 ]Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
                [2 ]Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
                Author notes
                Correspondence: Guixia Wang ( gwang168@ 123456jlu.edu.cn )
                [*]

                These authors contributed equally to this work.

                Article
                10.1042/BSR20180660
                6127672
                30104398
                c1e9b845-9d53-4879-ae3c-36c54d340a89
                © 2018 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 27 April 2018
                : 23 July 2018
                : 09 August 2018
                Page count
                Pages: 13
                Categories
                Review Articles
                Review Article
                42
                7
                19
                41
                47

                Life sciences
                biomarkers,metabolite,nmr spectroscopy,neuroimaging,type 2 diabetes
                Life sciences
                biomarkers, metabolite, nmr spectroscopy, neuroimaging, type 2 diabetes

                Comments

                Comment on this article