30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immortalization and Characterization of Porcine Macrophages That Had Been Transduced with Lentiviral Vectors Encoding the SV40 Large T Antigen and Porcine Telomerase Reverse Transcriptase

      methods-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The domestic pig is an important agricultural animal, and thus, infectious diseases that affect pigs can cause severe economic losses in the global swine industry. Various porcine pathogens target macrophages, which are classical innate immune cells. Although macrophages basically protect the host from pathogens, they also seem to contribute to infectious processes. Therefore, cultured macrophages can be used to develop in vitro models for studying not only genes associated with porcine innate immunity but also the infectious processes of porcine pathogens. However, the availability of porcine macrophage cell lines is limited. In this study, we describe a novel immortalized porcine kidney-derived macrophage (IPKM) cell line, which was generated by transferring the SV40 large T antigen (SV40LT) and porcine telomerase reverse transcriptase (pTERT) genes into primary porcine kidney-derived macrophages using lentiviral vectors. The IPKM displayed a typical macrophage morphology and was routinely passaged (doubling time: about 4 days). These cells were immunostained for macrophage markers. In addition, they exhibited substantial phagocytosis of polystyrene microbeads and released inflammatory cytokines upon lipopolysaccharide (LPS) stimulation. Furthermore, the maturation and secretion of interleukin-1β were observed after nigericin-induced inflammasome activation in LPS-primed IPKM. These findings suggest that IPKM exhibit the typical inflammatory characteristics of macrophages. By transferring the SV40LT and pTERT genes using lentiviral vectors, we also successfully immortalized macrophages derived from the peripheral blood of a low-density lipoprotein receptor-deficient pig. These results suggest that the co-expression of SV40LT and pTERT is an effective way of immortalizing porcine macrophages.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage polarization in bacterial infections.

          Converging studies have shown that M1 and M2 macrophages are functionally polarized in response to microorganisms and host mediators. Gene expression profiling of macrophages reveals that various Gram-negative and Gram-positive bacteria induce the transcriptional activity of a "common host response," which includes genes belonging to the M1 program. However, excessive or prolonged M1 polarization can lead to tissue injury and contribute to pathogenesis. The so-called M2 macrophages play a critical role in the resolution of inflammation by producing anti-inflammatory mediators. These M2 cells cover a continuum of cells with different phenotypic and functional properties. In addition, some bacterial pathogens induce specific M2 programs in macrophages. In this review, we discuss the relevance of macrophage polarization in three domains of infectious diseases: resistance to infection, infectious pathogenesis, and chronic evolution of infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-immunology: evasion of the host immune system by bacterial and viral pathogens.

            Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses.

              Direct functional screening of a cDNA expression library derived from primary porcine alveolar macrophages (PAM) revealed that CD163 is capable of conferring a porcine reproductive and respiratory syndrome virus (PRRSV)-permissive phenotype when introduced into nonpermissive cells. Transient-transfection experiments showed that full-length CD163 cDNAs from PAM, human U937 cells (histiocytic lymphoma), African green monkey kidney cells (MARC-145 and Vero), primary mouse peritoneal macrophages, and canine DH82 (histocytosis) cells encode functional virus receptors. In contrast, CD163 splice variants without the C-terminal transmembrane anchor domain do not provide PRRSV receptor function. We established several stable cell lines expressing CD163 cDNAs from pig, human, and monkey, using porcine kidney (PK 032495), feline kidney (NLFK), or baby hamster kidney (BHK-21) as the parental cell lines. These stable cell lines were susceptible to PRRSV infection and yielded high titers of progeny virus. Cell lines were phenotypically stable over 80 cell passages, and PRRSV could be serially passed at least 60 times, yielding in excess of 10(5) 50% tissue culture infective doses/ml.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                21 August 2017
                2017
                : 4
                : 132
                Affiliations
                [1] 1Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization , Tsukuba, Japan
                [2] 2Faculty of Pharmaceutical Sciences, Tokyo University of Science , Noda, Japan
                Author notes

                Edited by: Artur Summerfield, Institute of Virology and Immunology, Switzerland

                Reviewed by: Carol Geralyn Chitko-McKown, U.S. Meat Animal Research Center (ARS-USDA), United States; Armin Saalmueller, Veterinärmedizinische Universität Wien, Austria

                *Correspondence: Takato Takenouchi, ttakenou@ 123456affrc.go.jp

                These authors have contributed equally to this work.

                Specialty section: This article was submitted to Veterinary Infectious Diseases, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2017.00132
                5566601
                28871285
                c20680db-4a4a-46de-85c4-5190ab7c0292
                Copyright © 2017 Takenouchi, Kitani, Suzuki, Nakai, Fuchimoto, Tsukimoto, Shinkai, Sato and Uenishi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 June 2017
                : 03 August 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 23, Pages: 9, Words: 4833
                Categories
                Veterinary Science
                Methods

                porcine macrophages,immortalization,sv40 large t antigen,porcine telomerase reverse transcriptase,lentiviral vector

                Comments

                Comment on this article